BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

293 related articles for article (PubMed ID: 23965305)

  • 1. Structure of an 'open' clamp type II topoisomerase-DNA complex provides a mechanism for DNA capture and transport.
    Laponogov I; Veselkov DA; Crevel IM; Pan XS; Fisher LM; Sanderson MR
    Nucleic Acids Res; 2013 Nov; 41(21):9911-23. PubMed ID: 23965305
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Trapping of the transport-segment DNA by the ATPase domains of a type II topoisomerase.
    Laponogov I; Pan XS; Veselkov DA; Skamrova GB; Umrekar TR; Fisher LM; Sanderson MR
    Nat Commun; 2018 Jul; 9(1):2579. PubMed ID: 29968711
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural basis of gate-DNA breakage and resealing by type II topoisomerases.
    Laponogov I; Pan XS; Veselkov DA; McAuley KE; Fisher LM; Sanderson MR
    PLoS One; 2010 Jun; 5(6):e11338. PubMed ID: 20596531
    [TBL] [Abstract][Full Text] [Related]  

  • 4. ATP-bound conformation of topoisomerase IV: a possible target for quinolones in Streptococcus pneumoniae.
    Sifaoui F; Lamour V; Varon E; Moras D; Gutmann L
    J Bacteriol; 2003 Oct; 185(20):6137-46. PubMed ID: 14526026
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nucleotide-dependent domain movement in the ATPase domain of a human type IIA DNA topoisomerase.
    Wei H; Ruthenburg AJ; Bechis SK; Verdine GL
    J Biol Chem; 2005 Nov; 280(44):37041-7. PubMed ID: 16100112
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural insight into the quinolone-DNA cleavage complex of type IIA topoisomerases.
    Laponogov I; Sohi MK; Veselkov DA; Pan XS; Sawhney R; Thompson AW; McAuley KE; Fisher LM; Sanderson MR
    Nat Struct Mol Biol; 2009 Jun; 16(6):667-9. PubMed ID: 19448616
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure of a quinolone-stabilized cleavage complex of topoisomerase IV from Klebsiella pneumoniae and comparison with a related Streptococcus pneumoniae complex.
    Veselkov DA; Laponogov I; Pan XS; Selvarajah J; Skamrova GB; Branstrom A; Narasimhan J; Prasad JV; Fisher LM; Sanderson MR
    Acta Crystallogr D Struct Biol; 2016 Apr; 72(Pt 4):488-96. PubMed ID: 27050128
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Contribution of the ATP binding site of ParE to susceptibility to novobiocin and quinolones in Streptococcus pneumoniae.
    Dupont P; Aubry A; Cambau E; Gutmann L
    J Bacteriol; 2005 Feb; 187(4):1536-40. PubMed ID: 15687222
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Breakage-reunion domain of Streptococcus pneumoniae topoisomerase IV: crystal structure of a gram-positive quinolone target.
    Laponogov I; Veselkov DA; Sohi MK; Pan XS; Achari A; Yang C; Ferrara JD; Fisher LM; Sanderson MR
    PLoS One; 2007 Mar; 2(3):e301. PubMed ID: 17375187
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DNA Topoisomerase Inhibitors: Trapping a DNA-Cleaving Machine in Motion.
    Bax BD; Murshudov G; Maxwell A; Germe T
    J Mol Biol; 2019 Aug; 431(18):3427-3449. PubMed ID: 31301408
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Basic residues at the C-gate of DNA gyrase are involved in DNA supercoiling.
    Smith EM; Mondragón A
    J Biol Chem; 2021 Aug; 297(2):101000. PubMed ID: 34303706
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The path of the DNA along the dimer interface of topoisomerase II.
    Roca J
    J Biol Chem; 2004 Jun; 279(24):25783-8. PubMed ID: 15047688
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Binding of two DNA molecules by type II topoisomerases for decatenation.
    Kumar R; Riley JE; Parry D; Bates AD; Nagaraja V
    Nucleic Acids Res; 2012 Nov; 40(21):10904-15. PubMed ID: 22989710
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Crystal structures of Escherichia coli topoisomerase IV ParE subunit (24 and 43 kilodaltons): a single residue dictates differences in novobiocin potency against topoisomerase IV and DNA gyrase.
    Bellon S; Parsons JD; Wei Y; Hayakawa K; Swenson LL; Charifson PS; Lippke JA; Aldape R; Gross CH
    Antimicrob Agents Chemother; 2004 May; 48(5):1856-64. PubMed ID: 15105144
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The mechanism of negative DNA supercoiling: a cascade of DNA-induced conformational changes prepares gyrase for strand passage.
    Gubaev A; Klostermeier D
    DNA Repair (Amst); 2014 Apr; 16():23-34. PubMed ID: 24674625
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Probing the interaction of the cytotoxic bisdioxopiperazine ICRF-193 with the closed enzyme clamp of human topoisomerase IIalpha.
    Patel S; Jazrawi E; Creighton AM; Austin CA; Fisher LM
    Mol Pharmacol; 2000 Sep; 58(3):560-8. PubMed ID: 10953049
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A model for the mechanism of strand passage by DNA gyrase.
    Kampranis SC; Bates AD; Maxwell A
    Proc Natl Acad Sci U S A; 1999 Jul; 96(15):8414-9. PubMed ID: 10411889
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Novel symmetric and asymmetric DNA scission determinants for Streptococcus pneumoniae topoisomerase IV and gyrase are clustered at the DNA breakage site.
    Leo E; Gould KA; Pan XS; Capranico G; Sanderson MR; Palumbo M; Fisher LM
    J Biol Chem; 2005 Apr; 280(14):14252-63. PubMed ID: 15659402
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mapping the spectrum of conformational states of the DNA- and C-gates in Bacillus subtilis gyrase.
    Rudolph MG; Klostermeier D
    J Mol Biol; 2013 Aug; 425(15):2632-40. PubMed ID: 23602808
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamics of strand passage catalyzed by topoisomerase II.
    Xie P
    Eur Biophys J; 2010 Jul; 39(8):1251-9. PubMed ID: 20127325
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.