BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

307 related articles for article (PubMed ID: 23965388)

  • 1. Nutritional intervention in early life to manipulate rumen microbial colonization and methane output by kid goats postweaning.
    Abecia L; Martín-García AI; Martínez G; Newbold CJ; Yáñez-Ruiz DR
    J Anim Sci; 2013 Oct; 91(10):4832-40. PubMed ID: 23965388
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of bromochloromethane on methane emission, rumen fermentation pattern, milk yield, and fatty acid profile in lactating dairy goats.
    Abecia L; Toral PG; Martín-García AI; Martínez G; Tomkins NW; Molina-Alcaide E; Newbold CJ; Yáñez-Ruiz DR
    J Dairy Sci; 2012 Apr; 95(4):2027-36. PubMed ID: 22459848
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Supplementation of DHA-Gold pre and/or postnatally to goat kids modifies in vitro methane production and rumen morphology until 6 mo old.
    Ruiz-González A; Debruyne S; Dewanckele L; Escobar M; Vandaele L; Van Den Broeck W; Fievez V
    J Anim Sci; 2018 Nov; 96(11):4845-4858. PubMed ID: 30059970
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Supplementing goat kids with coconut medium chain fatty acids in early life influences growth and rumen papillae development until 4 months after supplementation but effects on in vitro methane emissions and the rumen microbiota are transient.
    Debruyne S; Ruiz-González A; Artiles-Ortega E; Ampe B; Van Den Broeck W; De Keyser E; Vandaele L; Goossens K; Fievez V
    J Anim Sci; 2018 May; 96(5):1978-1995. PubMed ID: 29529321
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An antimethanogenic nutritional intervention in early life of ruminants modifies ruminal colonization by Archaea.
    Abecia L; Waddams KE; Martínez-Fernandez G; Martín-García AI; Ramos-Morales E; Newbold CJ; Yáñez-Ruiz DR
    Archaea; 2014; 2014():841463. PubMed ID: 24803846
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Responses in digestion, rumen fermentation and microbial populations to inhibition of methane formation by a halogenated methane analogue.
    Mitsumori M; Shinkai T; Takenaka A; Enishi O; Higuchi K; Kobayashi Y; Nonaka I; Asanuma N; Denman SE; McSweeney CS
    Br J Nutr; 2012 Aug; 108(3):482-91. PubMed ID: 22059589
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of the Rumen Microbiome and Metabolome to Study the Effect of an Antimethanogenic Treatment Applied in Early Life of Kid Goats.
    Abecia L; Martínez-Fernandez G; Waddams K; Martín-García AI; Pinloche E; Creevey CJ; Denman SE; Newbold CJ; Yáñez-Ruiz DR
    Front Microbiol; 2018; 9():2227. PubMed ID: 30356690
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vitro-in vivo study on the effects of plant compounds on rumen fermentation, microbial abundances and methane emissions in goats.
    Martínez-Fernández G; Abecia L; Martín-García AI; Ramos-Morales E; Hervás G; Molina-Alcaide E; Yáñez-Ruiz DR
    Animal; 2013 Dec; 7(12):1925-34. PubMed ID: 24237672
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Early life dietary intervention in dairy calves results in a long-term reduction in methane emissions.
    Meale SJ; Popova M; Saro C; Martin C; Bernard A; Lagree M; Yáñez-Ruiz DR; Boudra H; Duval S; Morgavi DP
    Sci Rep; 2021 Feb; 11(1):3003. PubMed ID: 33542279
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of pasture pregrazing herbage mass on methane emissions, ruminal fermentation, and average daily gain of grazing beef heifers.
    Boland TM; Quinlan C; Pierce KM; Lynch MB; Kenny DA; Kelly AK; Purcell PJ
    J Anim Sci; 2013 Aug; 91(8):3867-74. PubMed ID: 23908161
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inoculation with rumen fluid in early life as a strategy to optimize the weaning process in intensive dairy goat systems.
    Belanche A; Palma-Hidalgo JM; Nejjam I; Jiménez E; Martín-García AI; Yáñez-Ruiz DR
    J Dairy Sci; 2020 Jun; 103(6):5047-5060. PubMed ID: 32278566
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydrogen and methane emissions from beef cattle and their rumen microbial community vary with diet, time after feeding and genotype.
    Rooke JA; Wallace RJ; Duthie CA; McKain N; de Souza SM; Hyslop JJ; Ross DW; Waterhouse T; Roehe R
    Br J Nutr; 2014 Aug; 112(3):398-407. PubMed ID: 24780126
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of dietary cellulase and xylanase addition on digestion, rumen fermentation and methane emission in growing goats.
    Lu Q; Jiao J; Tang S; He Z; Zhou C; Han X; Wang M; Kang J; Odongo NE; Tan Z
    Arch Anim Nutr; 2015; 69(4):251-66. PubMed ID: 25963843
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of dietary addition of cellulase and a Saccharomyces cerevisiae fermentation product on nutrient digestibility, rumen fermentation and enteric methane emissions in growing goats.
    Lu Q; Wu J; Wang M; Zhou C; Han X; Odongo EN; Tan Z; Tang S
    Arch Anim Nutr; 2016; 70(3):224-38. PubMed ID: 27032031
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Productive behavior in growing kid goats and methane production with the inclusion of chokecherry leaf (Prunus salicifolia).
    Robles Jimenez LE; Ruiz Perez JA; Nicolas DL; Chay Canul AJ; Ramirez-Rivera JC; Villegas-Estrada D; Vargas-Bello-Pérez E; Gonzalez-Ronquillo M
    Trop Anim Health Prod; 2020 May; 52(3):1257-1267. PubMed ID: 31728954
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of energy and protein restriction, followed by nutritional recovery on morphological development of the gastrointestinal tract of weaned kids.
    Sun ZH; He ZX; Zhang QL; Tan ZL; Han XF; Tang SX; Zhou CS; Wang M; Yan QX
    J Anim Sci; 2013 Sep; 91(9):4336-44. PubMed ID: 23851992
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Response of the rumen archaeal and bacterial populations to anti-methanogenic organosulphur compounds in continuous-culture fermenters.
    Martínez-Fernández G; Abecia L; Martín-García AI; Ramos-Morales E; Denman SE; Newbold CJ; Molina-Alcaide E; Yáñez-Ruiz DR
    FEMS Microbiol Ecol; 2015 Aug; 91(8):fiv079. PubMed ID: 26183917
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fungal secondary metabolites from Monascus spp. reduce rumen methane production in vitro and in vivo.
    Morgavi DP; Martin C; Boudra H
    J Anim Sci; 2013 Feb; 91(2):848-60. PubMed ID: 23307850
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of refined soy oil or whole soybeans on intake, methane output, and performance of young bulls.
    Jordan E; Kenny D; Hawkins M; Malone R; Lovett DK; O'Mara FP
    J Anim Sci; 2006 Sep; 84(9):2418-25. PubMed ID: 16908646
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rumen development process in goats as affected by supplemental feeding v. grazing: age-related anatomic development, functional achievement and microbial colonisation.
    Jiao J; Li X; Beauchemin KA; Tan Z; Tang S; Zhou C
    Br J Nutr; 2015 Mar; 113(6):888-900. PubMed ID: 25716279
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.