These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
158 related articles for article (PubMed ID: 239654)
1. Study of the regulation of oxidation and CO2 assimilation in intact Nitrobacter winogradskyi cells. Eigener U; Bock E Arch Microbiol; 1975 Mar; 102(3):241-6. PubMed ID: 239654 [TBL] [Abstract][Full Text] [Related]
2. Adenine nucleotide pool variations in intact Nitrobacter winogradskyi cells. Eigener U Arch Microbiol; 1975 Mar; 102(3):233-40. PubMed ID: 808183 [TBL] [Abstract][Full Text] [Related]
3. Expression of a putative nitrite reductase and the reversible inhibition of nitrite-dependent respiration by nitric oxide in Nitrobacter winogradskyi Nb-255. Starkenburg SR; Arp DJ; Bottomley PJ Environ Microbiol; 2008 Nov; 10(11):3036-42. PubMed ID: 18973623 [TBL] [Abstract][Full Text] [Related]
4. Spectrophotometric and kinetic study of nitrite and formate oxidation in Nitrobacter winogradskyi. Van Gool A; Laudelout H J Bacteriol; 1967 Jan; 93(1):215-20. PubMed ID: 4289808 [TBL] [Abstract][Full Text] [Related]
5. Energy-conserving reactions in phosphorylating electron-transport particles from Nitrobacter winogradskyi. Activation of nitrite oxidation by the electrical component of the protonmotive force. Cobley JG Biochem J; 1976 Jun; 156(3):481-91. PubMed ID: 182152 [TBL] [Abstract][Full Text] [Related]
6. Reduction of cytochromes by nitrite in electron-transport particles from Nitrobacter winogradskyi: proposal of a mechanism for H+ translocation. Cobley JG Biochem J; 1976 Jun; 156(3):493-8. PubMed ID: 182153 [TBL] [Abstract][Full Text] [Related]
12. Generation of reducing power in chemosynthesis. V. The mechanism of pyridine nucleotide reduction by nitrite in the chemoautotroph Nitrobacter agilis. Sewell DL; Aleem MI Biochim Biophys Acta; 1969 Apr; 172(3):467-75. PubMed ID: 4305696 [No Abstract] [Full Text] [Related]
13. Nitrobacter winogradskyi transcriptomic response to low and high ammonium concentrations. Sayavedra-Soto L; Ferrell R; Dobie M; Mellbye B; Chaplen F; Buchanan A; Chang J; Bottomley P; Arp D FEMS Microbiol Lett; 2015 Jan; 362(3):1-7. PubMed ID: 25673652 [TBL] [Abstract][Full Text] [Related]
14. Source of the oxygen atoms of nitrate in the oxidation of nitrite by Nitrobacter agilis and evidence against a P-O-N anhydride mechanism in oxidative phosphorylation. Hollocher TC Arch Biochem Biophys; 1984 Sep; 233(2):721-7. PubMed ID: 6486809 [TBL] [Abstract][Full Text] [Related]
15. [Structure and function relationship in reactivating cells of Nitrobacter winogradskyi Buch]. Bock E Zentralbl Bakteriol Orig A; 1972 May; 220(1):402-5. PubMed ID: 4145611 [No Abstract] [Full Text] [Related]
17. Phosphoribulokinase from Nitrobacter winogradskyi: activation by reduced nicotinamide adenine dinucleotide and inhibition by pyridoxal phosphate. Kiesow LA; Lindsley BF; Bless JW J Bacteriol; 1977 Apr; 130(1):20-5. PubMed ID: 15976 [TBL] [Abstract][Full Text] [Related]
18. Effects of pesticides on nitrite oxidation by Nitrobacter agilis. Winely CL; San Clemente CL Appl Microbiol; 1970 Feb; 19(2):214-9. PubMed ID: 4314375 [TBL] [Abstract][Full Text] [Related]
19. Energy metabolism of Bdellovibrio bacteriovorus. I. Energy production, ATP pool, energy charge. Gadkari D; Stolp H Arch Microbiol; 1975 Mar; 102(3):179-85. PubMed ID: 1156083 [TBL] [Abstract][Full Text] [Related]
20. Interactions between glucose metabolism and oxidative phosphorylations on respiratory-competent Saccharomyces cerevisiae cells. Beauvoit B; Rigoulet M; Bunoust O; Raffard G; Canioni P; Guérin B Eur J Biochem; 1993 May; 214(1):163-72. PubMed ID: 8508788 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]