BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 23965659)

  • 1. Surface transfer doping can mediate both colloidal stability and self-assembly of nanodiamonds.
    Petit T; Girard HA; Trouvé A; Batonneau-Gener I; Bergonzo P; Arnault JC
    Nanoscale; 2013 Oct; 5(19):8958-62. PubMed ID: 23965659
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oxygen hole doping of nanodiamond.
    Petit T; Arnault JC; Girard HA; Sennour M; Kang TY; Cheng CL; Bergonzo P
    Nanoscale; 2012 Nov; 4(21):6792-9. PubMed ID: 23000973
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surface chemical modifications and surface reactivity of nanodiamonds hydrogenated by CVD plasma.
    Arnault JC; Petit T; Girard H; Chavanne A; Gesset C; Sennour M; Chaigneau M
    Phys Chem Chem Phys; 2011 Jun; 13(24):11481-7. PubMed ID: 21528148
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surface properties of hydrogenated nanodiamonds: a chemical investigation.
    Girard HA; Petit T; Perruchas S; Gacoin T; Gesset C; Arnault JC; Bergonzo P
    Phys Chem Chem Phys; 2011 Jun; 13(24):11517-23. PubMed ID: 21566816
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Charge transfer equilibria between diamond and an aqueous oxygen electrochemical redox couple.
    Chakrapani V; Angus JC; Anderson AB; Wolter SD; Stoner BR; Sumanasekera GU
    Science; 2007 Nov; 318(5855):1424-30. PubMed ID: 18048683
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ground and excited state charge transfer at aqueous nanodiamonds.
    Kirschbaum T; Wang X; Bande A
    J Comput Chem; 2024 Apr; 45(11):710-718. PubMed ID: 38109424
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lysine-functionalized nanodiamonds as gene carriers: development of stable colloidal dispersion for in vitro cellular uptake studies and siRNA delivery application.
    Alwani S; Kaur R; Michel D; Chitanda JM; Verrall RE; Karunakaran C; Badea I
    Int J Nanomedicine; 2016; 11():687-702. PubMed ID: 26929623
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impairing the radioresistance of cancer cells by hydrogenated nanodiamonds.
    Grall R; Girard H; Saad L; Petit T; Gesset C; Combis-Schlumberger M; Paget V; Delic J; Arnault JC; Chevillard S
    Biomaterials; 2015 Aug; 61():290-8. PubMed ID: 26010122
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Redox properties of undoped 5 nm diamond nanoparticles.
    Holt KB; Ziegler C; Caruana DJ; Zang J; Millán-Barrios EJ; Hu J; Foord JS
    Phys Chem Chem Phys; 2008 Jan; 10(2):303-10. PubMed ID: 18213416
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Charge transport across high surface area metal/diamond nanostructured composites.
    Plana D; Humphrey JJ; Bradley KA; Celorrio V; Fermín DJ
    ACS Appl Mater Interfaces; 2013 Apr; 5(8):2985-90. PubMed ID: 23510528
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Colloidal properties and behaviors of 3 nm primary particles of detonation nanodiamonds in aqueous media.
    Mchedlov-Petrossyan NO; Kamneva NN; Marynin AI; Kryshtal AP; Ōsawa E
    Phys Chem Chem Phys; 2015 Jun; 17(24):16186-203. PubMed ID: 26035732
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tritium labeling of detonation nanodiamonds.
    Girard HA; El-Kharbachi A; Garcia-Argote S; Petit T; Bergonzo P; Rousseau B; Arnault JC
    Chem Commun (Camb); 2014 Mar; 50(22):2916-8. PubMed ID: 24492594
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydroxyl radical production induced by plasma hydrogenated nanodiamonds under X-ray irradiation.
    Kurzyp M; Girard HA; Cheref Y; Brun E; Sicard-Roselli C; Saada S; Arnault JC
    Chem Commun (Camb); 2017 Jan; 53(7):1237-1240. PubMed ID: 28058432
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanostructuring of biosensing electrodes with nanodiamonds for antibody immobilization.
    Zhang W; Patel K; Schexnider A; Banu S; Radadia AD
    ACS Nano; 2014 Feb; 8(2):1419-28. PubMed ID: 24397797
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lysine-functionalized nanodiamonds: synthesis, physiochemical characterization, and nucleic acid binding studies.
    Kaur R; Chitanda JM; Michel D; Maley J; Borondics F; Yang P; Verrall RE; Badea I
    Int J Nanomedicine; 2012; 7():3851-66. PubMed ID: 22904623
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surface transfer doping of diamond.
    Strobel P; Riedel M; Ristein J; Ley L
    Nature; 2004 Jul; 430(6998):439-41. PubMed ID: 15269764
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metal-Mediated DNA Adsorption on Carboxylated, Hydroxylated, and Hydrogenated Nanodiamonds.
    Zandieh M; Liu J
    Langmuir; 2023 Aug; 39(33):11596-11602. PubMed ID: 37552885
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Facile surface functionalization of nanodiamonds.
    Chang IP; Hwang KC; Ho JA; Lin CC; Hwu RJ; Horng JC
    Langmuir; 2010 Mar; 26(5):3685-9. PubMed ID: 19856970
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of oxidative adsorbates and cluster formation on the electronic structure of nanodiamonds.
    Kirschbaum T; Petit T; Dzubiella J; Bande A
    J Comput Chem; 2022 May; 43(13):923-929. PubMed ID: 35322429
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Science and engineering of nanodiamond particle surfaces for biological applications (Review).
    Shenderova OA; McGuire GE
    Biointerphases; 2015 Sep; 10(3):030802. PubMed ID: 26245200
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.