BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 23965659)

  • 21. Utilizing Constant Energy Difference between sp-Peak and C 1s Core Level in Photoelectron Spectra for Unambiguous Identification and Quantification of Diamond Phase in Nanodiamonds.
    Romanyuk O; Stehlík Š; Zemek J; Aubrechtová Dragounová K; Kromka A
    Nanomaterials (Basel); 2024 Mar; 14(7):. PubMed ID: 38607124
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The surface conductivity at the diamond/aqueous electrolyte interface.
    Garrido JA; Härtl A; Dankerl M; Reitinger A; Eickhoff M; Helwig A; Müller G; Stutzmann M
    J Am Chem Soc; 2008 Mar; 130(12):4177-81. PubMed ID: 18314982
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Hydroxylation and self-assembly of colloidal hydrogenated nanodiamonds by aqueous oxygen radicals from atmospheric pressure plasma jet.
    Jirásek V; Stehlík Š; Štenclová P; Artemenko A; Rezek B; Kromka A
    RSC Adv; 2018 Nov; 8(66):37681-37692. PubMed ID: 35558630
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Nanodiamonds for device applications: An investigation of the properties of boron-doped detonation nanodiamonds.
    Afandi A; Howkins A; Boyd IW; Jackman RB
    Sci Rep; 2018 Feb; 8(1):3270. PubMed ID: 29459783
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Excessive sodium ions delivered into cells by nanodiamonds: implications for tumor therapy.
    Zhu Y; Li W; Zhang Y; Li J; Liang L; Zhang X; Chen N; Sun Y; Chen W; Tai R; Fan C; Huang Q
    Small; 2012 Jun; 8(11):1771-9. PubMed ID: 22434708
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The ion sensitivity of surface conductive single crystalline diamond.
    Härtl A; Garrido JA; Nowy S; Zimmermann R; Werner C; Horinek D; Netz R; Stutzmann M
    J Am Chem Soc; 2007 Feb; 129(5):1287-92. PubMed ID: 17263412
    [TBL] [Abstract][Full Text] [Related]  

  • 27. DNA damage in embryonic stem cells caused by nanodiamonds.
    Xing Y; Xiong W; Zhu L; Osawa E; Hussin S; Dai L
    ACS Nano; 2011 Mar; 5(3):2376-84. PubMed ID: 21370893
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Zeta potential of microbubbles in aqueous solutions: electrical properties of the gas-water interface.
    Takahashi M
    J Phys Chem B; 2005 Nov; 109(46):21858-64. PubMed ID: 16853839
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Uptake and intracellular accumulation of diamond nanoparticles - a metabolic and cytotoxic study.
    Brož A; Bačáková L; Štenclová P; Kromka A; Potocký Š
    Beilstein J Nanotechnol; 2017; 8():1649-1657. PubMed ID: 28875102
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mass spectrometry of nanodiamonds.
    Houska J; Panyala NR; Peña-Méndez EM; Havel J
    Rapid Commun Mass Spectrom; 2009 Apr; 23(8):1125-31. PubMed ID: 19280609
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Fano-type Effect in Hydrogen-Terminated Pure Nanodiamond.
    Kudryavtsev OS; Bagramov RH; Satanin AM; Shiryaev AA; Lebedev OI; Romshin AM; Pasternak DG; Nikolaev AV; Filonenko VP; Vlasov II
    Nano Lett; 2022 Apr; 22(7):2589-2594. PubMed ID: 35302763
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Aggregation behavior of nanodiamonds and their functionalized analogs in an aqueous environment.
    Desai C; Chen K; Mitra S
    Environ Sci Process Impacts; 2014 Mar; 16(3):518-23. PubMed ID: 24352711
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Water-induced correlation between single ions imaged at the solid-liquid interface.
    Ricci M; Spijker P; Voïtchovsky K
    Nat Commun; 2014 Jul; 5():4400. PubMed ID: 25027990
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Destruction of human blood cells upon interaction with detonation nanodiamonds in experiments in vitro].
    Puzyr' AP; Neshumaev DA; Tarskikh SV; Makarskaia GV; Dolmatov VIu; Bondar' VS
    Biofizika; 2005; 50(1):101-6. PubMed ID: 15759508
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Self-assembly properties, aggregation behavior and prospective application for sustained drug delivery of a drug-participating catanionic system.
    Zhao L; Liu J; Zhang L; Gao Y; Zhang Z; Luan Y
    Int J Pharm; 2013 Aug; 452(1-2):108-15. PubMed ID: 23644346
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Surface structure and properties of functionalized nanodiamonds: a first-principles study.
    Datta A; Kirca M; Fu Y; To AC
    Nanotechnology; 2011 Feb; 22(6):065706. PubMed ID: 21212485
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Surface conductivity of hydrogenated diamond films.
    Andriotis AN; Mpourmpakis G; Richter E; Menon M
    Phys Rev Lett; 2008 Mar; 100(10):106801. PubMed ID: 18352217
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Nanodiamonds as vehicles for systemic and localized drug delivery.
    Lam R; Ho D
    Expert Opin Drug Deliv; 2009 Sep; 6(9):883-95. PubMed ID: 19637985
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Temporal and mechanistic tracking of cellular uptake dynamics with novel surface fluorophore-bound nanodiamonds.
    Schrand AM; Lin JB; Hens SC; Hussain SM
    Nanoscale; 2011 Feb; 3(2):435-45. PubMed ID: 20877788
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Electron-transfer doping on a (001) surface of diamond: quantum mechanical study.
    Petrini D; Larsson K
    J Phys Chem B; 2005 Dec; 109(47):22426-31. PubMed ID: 16853921
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.