These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
279 related articles for article (PubMed ID: 23966172)
1. Regulation of lysosome biogenesis and functions in osteoclasts. Lacombe J; Karsenty G; Ferron M Cell Cycle; 2013 Sep; 12(17):2744-52. PubMed ID: 23966172 [TBL] [Abstract][Full Text] [Related]
2. A RANKL-PKCβ-TFEB signaling cascade is necessary for lysosomal biogenesis in osteoclasts. Ferron M; Settembre C; Shimazu J; Lacombe J; Kato S; Rawlings DJ; Ballabio A; Karsenty G Genes Dev; 2013 Apr; 27(8):955-69. PubMed ID: 23599343 [TBL] [Abstract][Full Text] [Related]
3. Aesculetin Inhibits Osteoclastic Bone Resorption through Blocking Ruffled Border Formation and Lysosomal Trafficking. Na W; Lee EJ; Kang MK; Kim YH; Kim DY; Oh H; Kim SI; Oh SY; Kang YH Int J Mol Sci; 2020 Nov; 21(22):. PubMed ID: 33203061 [TBL] [Abstract][Full Text] [Related]
4. V-ATPase subunit ATP6AP1 (Ac45) regulates osteoclast differentiation, extracellular acidification, lysosomal trafficking, and protease exocytosis in osteoclast-mediated bone resorption. Yang DQ; Feng S; Chen W; Zhao H; Paulson C; Li YP J Bone Miner Res; 2012 Aug; 27(8):1695-707. PubMed ID: 22467241 [TBL] [Abstract][Full Text] [Related]
6. Degradation of the organic phase of bone by osteoclasts: a secondary role for lysosomal acidification. Henriksen K; Sørensen MG; Nielsen RH; Gram J; Schaller S; Dziegiel MH; Everts V; Bollerslev J; Karsdal MA J Bone Miner Res; 2006 Jan; 21(1):58-66. PubMed ID: 16355274 [TBL] [Abstract][Full Text] [Related]
7. Snx10 and PIKfyve are required for lysosome formation in osteoclasts. Sultana F; Morse LR; Picotto G; Liu W; Jha PK; Odgren PR; Battaglino RA J Cell Biochem; 2020 Apr; 121(4):2927-2937. PubMed ID: 31692073 [TBL] [Abstract][Full Text] [Related]
8. Autophagy proteins regulate the secretory component of osteoclastic bone resorption. DeSelm CJ; Miller BC; Zou W; Beatty WL; van Meel E; Takahata Y; Klumperman J; Tooze SA; Teitelbaum SL; Virgin HW Dev Cell; 2011 Nov; 21(5):966-74. PubMed ID: 22055344 [TBL] [Abstract][Full Text] [Related]
9. Lysosomal biogenesis and function in osteoclasts: a comprehensive review. Jiang J; Ren R; Fang W; Miao J; Wen Z; Wang X; Xu J; Jin H Front Cell Dev Biol; 2024; 12():1431566. PubMed ID: 39170917 [TBL] [Abstract][Full Text] [Related]
10. Sugar transporter Slc37a2 regulates bone metabolism in mice via a tubular lysosomal network in osteoclasts. Ng PY; Ribet ABP; Guo Q; Mullin BH; Tan JWY; Landao-Bassonga E; Stephens S; Chen K; Yuan J; Abudulai L; Bollen M; Nguyen ETTT; Kular J; Papadimitriou JM; Søe K; Teasdale RD; Xu J; Parton RG; Takayanagi H; Pavlos NJ Nat Commun; 2023 Feb; 14(1):906. PubMed ID: 36810735 [TBL] [Abstract][Full Text] [Related]
11. Cell-mediated extracellular acidification and bone resorption: evidence for a low pH in resorbing lacunae and localization of a 100-kD lysosomal membrane protein at the osteoclast ruffled border. Baron R; Neff L; Louvard D; Courtoy PJ J Cell Biol; 1985 Dec; 101(6):2210-22. PubMed ID: 3905822 [TBL] [Abstract][Full Text] [Related]
12. Dissolution of the inorganic phase of bone leading to release of calcium regulates osteoclast survival. Nielsen RH; Karsdal MA; Sørensen MG; Dziegiel MH; Henriksen K Biochem Biophys Res Commun; 2007 Sep; 360(4):834-9. PubMed ID: 17631274 [TBL] [Abstract][Full Text] [Related]
13. Osteoclasts degrade bone and cartilage knee joint compartments through different resorption processes. Löfvall H; Newbould H; Karsdal MA; Dziegiel MH; Richter J; Henriksen K; Thudium CS Arthritis Res Ther; 2018 Apr; 20(1):67. PubMed ID: 29636095 [TBL] [Abstract][Full Text] [Related]
14. Microcracks and osteoclast resorption activity in vitro. Rumpler M; Würger T; Roschger P; Zwettler E; Peterlik H; Fratzl P; Klaushofer K Calcif Tissue Int; 2012 Mar; 90(3):230-8. PubMed ID: 22271249 [TBL] [Abstract][Full Text] [Related]
15. Actin-binding protein coronin 1A controls osteoclastic bone resorption by regulating lysosomal secretion of cathepsin K. Ohmae S; Noma N; Toyomoto M; Shinohara M; Takeiri M; Fuji H; Takemoto K; Iwaisako K; Fujita T; Takeda N; Kawatani M; Aoyama M; Hagiwara M; Ishihama Y; Asagiri M Sci Rep; 2017 Mar; 7():41710. PubMed ID: 28300073 [TBL] [Abstract][Full Text] [Related]
16. The R740S mutation in the V-ATPase a3 subunit increases lysosomal pH, impairs NFATc1 translocation, and decreases in vitro osteoclastogenesis. Voronov I; Ochotny N; Jaumouillé V; Owen C; Manolson MF; Aubin JE J Bone Miner Res; 2013 Jan; 28(1):108-18. PubMed ID: 22865292 [TBL] [Abstract][Full Text] [Related]
17. A difference in the enzyme contents of resorption lacunae and secondary lysosomes of osteoclasts. Karhukorpi EK; Vihko P; Väänänen K Acta Histochem; 1992; 92(1):1-11. PubMed ID: 1580139 [TBL] [Abstract][Full Text] [Related]
18. Evidence that failure of osteoid bone matrix resorption is caused by perturbation of osteoclast polarization. Yovich S; Seydel U; Papadimitriou JM; Nicholson GC; Wood DJ; Zheng MH Histochem J; 1998 Apr; 30(4):267-73. PubMed ID: 9610818 [TBL] [Abstract][Full Text] [Related]
19. PDK1 is important lipid kinase for RANKL-induced osteoclast formation and function via the regulation of the Akt-GSK3β-NFATc1 signaling cascade. Xiao D; Zhou Q; Gao Y; Cao B; Zhang Q; Zeng G; Zong S J Cell Biochem; 2020 Nov; 121(11):4542-4557. PubMed ID: 32048762 [TBL] [Abstract][Full Text] [Related]
20. Ion transporters involved in acidification of the resorption lacuna in osteoclasts. Henriksen K; Sørensen MG; Jensen VK; Dziegiel MH; Nosjean O; Karsdal MA Calcif Tissue Int; 2008 Sep; 83(3):230-42. PubMed ID: 18787885 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]