These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 23966230)

  • 41. Single cell detection using a glass-based optofluidic device fabricated by femtosecond laser pulses.
    Kim M; Hwang DJ; Jeon H; Hiromatsu K; Grigoropoulos CP
    Lab Chip; 2009 Jan; 9(2):311-8. PubMed ID: 19107290
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Surface properties of femtosecond laser ablated PMMA.
    Marco CD; Eaton SM; Suriano R; Turri S; Levi M; Ramponi R; Cerullo G; Osellame R
    ACS Appl Mater Interfaces; 2010 Aug; 2(8):2377-84. PubMed ID: 20735111
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Direct micro-patterning of biodegradable polymers using ultraviolet and femtosecond lasers.
    Aguilar CA; Lu Y; Mao S; Chen S
    Biomaterials; 2005 Dec; 26(36):7642-9. PubMed ID: 15950279
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Microfabricated surface designs for cell culture and diagnosis.
    Matsuda T; Chung DJ
    ASAIO J; 1994; 40(3):M594-7. PubMed ID: 8555584
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Proliferation of aligned mammalian cells on laser-nanostructured polystyrene.
    Rebollar E; Frischauf I; Olbrich M; Peterbauer T; Hering S; Preiner J; Hinterdorfer P; Romanin C; Heitz J
    Biomaterials; 2008 Apr; 29(12):1796-806. PubMed ID: 18237776
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Fabrication of reversibly adhesive fluidic devices using magnetism.
    Rafat M; Raad DR; Rowat AC; Auguste DT
    Lab Chip; 2009 Oct; 9(20):3016-9. PubMed ID: 19789760
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A comparison of excimer laser (308 nm) ablation of the human lens nucleus in air and saline with a fiber optic delivery system.
    Martinez M; Maguen E; Bardenstein D; Duffy M; Yoser S; Papaioannou T; Grundfest W
    Refract Corneal Surg; 1992; 8(5):368-74. PubMed ID: 1450118
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Photochemical modification and patterning of polymer surfaces by surface adsorption of photoactive block copolymers.
    Pan F; Wang P; Lee K; Wu A; Turro NJ; Koberstein JT
    Langmuir; 2005 Apr; 21(8):3605-12. PubMed ID: 15807608
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Efficient creation of cellular micropatterns with long-term stability and their geometric effects on cell behavior.
    Huang NP; Yu H; Wang YY; Shi JC; Mao X
    Biointerphases; 2011 Dec; 6(4):143-52. PubMed ID: 22239806
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The application of 3D micropatterning of agarose substrate for cell culture and in situ comet assays.
    Mercey E; Obeïd P; Glaise D; Calvo-Muñoz ML; Guguen-Guillouzo C; Fouqué B
    Biomaterials; 2010 Apr; 31(12):3156-65. PubMed ID: 20149429
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Numerical analysis of laser ablation and damage in glass with multiple picosecond laser pulses.
    Sun M; Eppelt U; Russ S; Hartmann C; Siebert C; Zhu J; Schulz W
    Opt Express; 2013 Apr; 21(7):7858-67. PubMed ID: 23571876
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Dynamic photochemical silane micropatterning.
    Nakanishi J
    Methods Cell Biol; 2014; 120():117-29. PubMed ID: 24484660
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Waterproof active paper via laser surface micropatterning of magnetic nanoparticles.
    Chitnis G; Ziaie B
    ACS Appl Mater Interfaces; 2012 Sep; 4(9):4435-9. PubMed ID: 22939525
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Direct-write patterning of indium-tin-oxide film by high pulse repetition frequency femtosecond laser ablation.
    Choi HW; Farson DF; Bovatsek J; Arai A; Ashkenasi D
    Appl Opt; 2007 Aug; 46(23):5792-9. PubMed ID: 17700755
    [TBL] [Abstract][Full Text] [Related]  

  • 55. In vitro assessment of motility and proliferation of human osteogenic cells on different isolated extracellular matrix components compared with enamel matrix derivative by continuous single-cell observation.
    Klein MO; Reichert C; Koch D; Horn S; Al-Nawas B
    Clin Oral Implants Res; 2007 Feb; 18(1):40-5. PubMed ID: 17224022
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Two-dimensional patterning of thin coatings for the control of tissue outgrowth.
    Thissen H; Johnson G; Hartley PG; Kingshott P; Griesser HJ
    Biomaterials; 2006 Jan; 27(1):35-43. PubMed ID: 15996730
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Micropatterned surfaces prepared using a liquid crystal projector-modified photopolymerization device and microfluidics.
    Itoga K; Yamato M; Kobayashi J; Kikuchi A; Okano T
    J Biomed Mater Res A; 2004 Jun; 69(3):391-7. PubMed ID: 15127385
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Optical coherence tomography for process control of laser micromachining.
    Wiesner M; Ihlemann J; Müller HH; Lankenau E; Hüttmann G
    Rev Sci Instrum; 2010 Mar; 81(3):033705. PubMed ID: 20370183
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Surface microarchitectural design in biomedical applications: preparation of microporous polymer surfaces by an excimer laser ablation technique.
    Nakayama Y; Matsuda T
    J Biomed Mater Res; 1995 Oct; 29(10):1295-301. PubMed ID: 8557732
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Computer-controlled laser ablation: a convenient and versatile tool for micropatterning biofunctional synthetic surfaces for applications in biosensing and tissue engineering.
    Vaidya R; Tender LM; Bradley G; O'Brien MJ; Cone M; López GP
    Biotechnol Prog; 1998; 14(3):371-7. PubMed ID: 9622517
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.