BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 23966235)

  • 1. Protein structure modeling for CASP10 by multiple layers of global optimization.
    Joo K; Lee J; Sim S; Lee SY; Lee K; Heo S; Lee IH; Lee SJ; Lee J
    Proteins; 2014 Feb; 82 Suppl 2():188-95. PubMed ID: 23966235
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DeepFold: enhancing protein structure prediction through optimized loss functions, improved template features, and re-optimized energy function.
    Lee JW; Won JH; Jeon S; Choo Y; Yeon Y; Oh JS; Kim M; Kim S; Joung I; Jang C; Lee SJ; Kim TH; Jin KH; Song G; Kim ES; Yoo J; Paek E; Noh YK; Joo K
    Bioinformatics; 2023 Dec; 39(12):. PubMed ID: 37995286
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sigma-RF: prediction of the variability of spatial restraints in template-based modeling by random forest.
    Lee J; Lee K; Joung I; Joo K; Brooks BR; Lee J
    BMC Bioinformatics; 2015 Mar; 16():94. PubMed ID: 25886990
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Algorithms for multiple protein structure alignment and structure-derived multiple sequence alignment.
    Shatsky M; Nussinov R; Wolfson HJ
    Methods Mol Biol; 2008; 413():125-46. PubMed ID: 18075164
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A multi-template combination algorithm for protein comparative modeling.
    Cheng J
    BMC Struct Biol; 2008 Mar; 8():18. PubMed ID: 18366648
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hybrid global optimization algorithms for protein structure prediction: alternating hybrids.
    Klepeis JL; Pieja MJ; Floudas CA
    Biophys J; 2003 Feb; 84(2 Pt 1):869-82. PubMed ID: 12547770
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Challenging the state of the art in protein structure prediction: Highlights of experimental target structures for the 10th Critical Assessment of Techniques for Protein Structure Prediction Experiment CASP10.
    Kryshtafovych A; Moult J; Bales P; Bazan JF; Biasini M; Burgin A; Chen C; Cochran FV; Craig TK; Das R; Fass D; Garcia-Doval C; Herzberg O; Lorimer D; Luecke H; Ma X; Nelson DC; van Raaij MJ; Rohwer F; Segall A; Seguritan V; Zeth K; Schwede T
    Proteins; 2014 Feb; 82 Suppl 2(0 2):26-42. PubMed ID: 24318984
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Automated protein motif generation in the structure-based protein function prediction tool ProMOL.
    Osipovitch M; Lambrecht M; Baker C; Madha S; Mills JL; Craig PA; Bernstein HJ
    J Struct Funct Genomics; 2015 Dec; 16(3-4):101-11. PubMed ID: 26573864
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recent Progress of Protein Tertiary Structure Prediction.
    Wuyun Q; Chen Y; Shen Y; Cao Y; Hu G; Cui W; Gao J; Zheng W
    Molecules; 2024 Feb; 29(4):. PubMed ID: 38398585
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modularity of Protein Folds as a Tool for Template-Free Modeling of Structures.
    Vallat B; Madrid-Aliste C; Fiser A
    PLoS Comput Biol; 2015 Aug; 11(8):e1004419. PubMed ID: 26252221
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improving homology modeling from low-sequence identity templates in Rosetta: A case study in GPCRs.
    Bender BJ; Marlow B; Meiler J
    PLoS Comput Biol; 2020 Oct; 16(10):e1007597. PubMed ID: 33112852
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessment of the assessment: evaluation of the model quality estimates in CASP10.
    Kryshtafovych A; Barbato A; Fidelis K; Monastyrskyy B; Schwede T; Tramontano A
    Proteins; 2014 Feb; 82 Suppl 2(0 2):112-26. PubMed ID: 23780644
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Toward the solution of the protein structure prediction problem.
    Pearce R; Zhang Y
    J Biol Chem; 2021 Jul; 297(1):100870. PubMed ID: 34119522
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predicting protein tertiary structure and its uncertainty analysis via particle swarm sampling.
    Álvarez Ó; Fernández-Martínez JL; Corbeanu AC; Fernández-Muñiz Z; Kloczkowski A
    J Mol Model; 2019 Feb; 25(3):79. PubMed ID: 30810816
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deep template-based protein structure prediction.
    Wu F; Xu J
    PLoS Comput Biol; 2021 May; 17(5):e1008954. PubMed ID: 33939695
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Physics-based protein structure refinement through multiple molecular dynamics trajectories and structure averaging.
    Mirjalili V; Noyes K; Feig M
    Proteins; 2014 Feb; 82 Suppl 2(0 2):196-207. PubMed ID: 23737254
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Critical assessment of methods of protein structure prediction (CASP)-Round XII.
    Moult J; Fidelis K; Kryshtafovych A; Schwede T; Tramontano A
    Proteins; 2018 Mar; 86 Suppl 1(Suppl 1):7-15. PubMed ID: 29082672
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The impact of AI-based modeling on the accuracy of protein assembly prediction: Insights from CASP15.
    Ozden B; Kryshtafovych A; Karaca E
    Proteins; 2023 Dec; 91(12):1636-1657. PubMed ID: 37861057
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Making Use of Averaging Methods in MODELLER for Protein Structure Prediction.
    Rosignoli S; Lustrino E; Di Silverio I; Paiardini A
    Int J Mol Sci; 2024 Jan; 25(3):. PubMed ID: 38339009
    [TBL] [Abstract][Full Text] [Related]  

  • 20. OPUS-Rota4: a gradient-based protein side-chain modeling framework assisted by deep learning-based predictors.
    Xu G; Wang Q; Ma J
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34905769
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.