BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 23966275)

  • 1. Absolute quantitation of sub-micrometer particles in cells by flow cytometry.
    Höcherl A; Landfester K; Mailänder V
    Macromol Biosci; 2013 Nov; 13(11):1568-75. PubMed ID: 23966275
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Integrated multiplatform method for in vitro quantitative assessment of cellular uptake for fluorescent polymer nanoparticles.
    Ferrari R; Lupi M; Falcetta F; Bigini P; Paolella K; Fiordaliso F; Bisighini C; Salmona M; D'Incalci M; Morbidelli M; Moscatelli D; Ubezio P
    Nanotechnology; 2014 Jan; 25(4):045102. PubMed ID: 24398665
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Competitive cellular uptake of nanoparticles made from polystyrene, poly(methyl methacrylate), and polylactide.
    Höcherl A; Dass M; Landfester K; Mailänder V; Musyanovych A
    Macromol Biosci; 2012 Apr; 12(4):454-64. PubMed ID: 22362704
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Polymeric nanoparticles of different sizes overcome the cell membrane barrier.
    Lerch S; Dass M; Musyanovych A; Landfester K; Mailänder V
    Eur J Pharm Biopharm; 2013 Jun; 84(2):265-74. PubMed ID: 23422734
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preparation and in vitro properties of redox-responsive polymeric nanoparticles for paclitaxel delivery.
    Song N; Liu W; Tu Q; Liu R; Zhang Y; Wang J
    Colloids Surf B Biointerfaces; 2011 Oct; 87(2):454-63. PubMed ID: 21719259
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fluorescence-encoded gold nanoparticles: library design and modulation of cellular uptake into dendritic cells.
    Rodriguez-Lorenzo L; Fytianos K; Blank F; von Garnier C; Rothen-Rutishauser B; Petri-Fink A
    Small; 2014 Apr; 10(7):1341-50. PubMed ID: 24482355
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Uptake and intracellular localization of submicron and nano-sized SiO₂ particles in HeLa cells.
    Al-Rawi M; Diabaté S; Weiss C
    Arch Toxicol; 2011 Jul; 85(7):813-26. PubMed ID: 21240478
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interaction of folate-conjugated human serum albumin (HSA) nanoparticles with tumour cells.
    Ulbrich K; Michaelis M; Rothweiler F; Knobloch T; Sithisarn P; Cinatl J; Kreuter J
    Int J Pharm; 2011 Mar; 406(1-2):128-34. PubMed ID: 21185364
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The softer and more hydrophobic the better: influence of the side chain of polymethacrylate nanoparticles for cellular uptake.
    Lorenz S; Hauser CP; Autenrieth B; Weiss CK; Landfester K; Mailänder V
    Macromol Biosci; 2010 Sep; 10(9):1034-42. PubMed ID: 20572275
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preparation and characterization of teniposide PLGA nanoparticles and their uptake in human glioblastoma U87MG cells.
    Mo L; Hou L; Guo D; Xiao X; Mao P; Yang X
    Int J Pharm; 2012 Oct; 436(1-2):815-24. PubMed ID: 22846410
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative assessment of the comparative nanoparticle-uptake efficiency of a range of cell lines.
    dos Santos T; Varela J; Lynch I; Salvati A; Dawson KA
    Small; 2011 Dec; 7(23):3341-9. PubMed ID: 22009913
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deciphering the mechanisms of cellular uptake of engineered nanoparticles by accurate evaluation of internalization using imaging flow cytometry.
    Vranic S; Boggetto N; Contremoulins V; Mornet S; Reinhardt N; Marano F; Baeza-Squiban A; Boland S
    Part Fibre Toxicol; 2013 Feb; 10():2. PubMed ID: 23388071
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In situ probing of intracellular pH by fluorescence from inorganic nanoparticles.
    Guo J; Xiong S; Wu X; Shen J; Chu PK
    Biomaterials; 2013 Dec; 34(36):9183-9. PubMed ID: 24008041
    [TBL] [Abstract][Full Text] [Related]  

  • 14. How shape influences uptake: interactions of anisotropic polymer nanoparticles and human mesenchymal stem cells.
    Florez L; Herrmann C; Cramer JM; Hauser CP; Koynov K; Landfester K; Crespy D; Mailänder V
    Small; 2012 Jul; 8(14):2222-30. PubMed ID: 22528663
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A mPEG-PLGA-b-PLL copolymer carrier for adriamycin and siRNA delivery.
    Liu P; Yu H; Sun Y; Zhu M; Duan Y
    Biomaterials; 2012 Jun; 33(17):4403-12. PubMed ID: 22436800
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biocompatibility, cellular uptake and biodistribution of the polymeric amphiphilic nanoparticles as oral drug carriers.
    Liu Y; Kong M; Feng C; Yang KK; Li Y; Su J; Cheng XJ; Park HJ; Chen XG
    Colloids Surf B Biointerfaces; 2013 Mar; 103():345-53. PubMed ID: 23247264
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Receptor-mediated cellular uptake of folate-conjugated fluorescent nanodiamonds: a combined ensemble and single-particle study.
    Zhang B; Li Y; Fang CY; Chang CC; Chen CS; Chen YY; Chang HC
    Small; 2009 Dec; 5(23):2716-21. PubMed ID: 19743434
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preparation of folate-modified pullulan acetate nanoparticles for tumor-targeted drug delivery.
    Zhang HZ; Li XM; Gao FP; Liu LR; Zhou ZM; Zhang QQ
    Drug Deliv; 2010 Jan; 17(1):48-57. PubMed ID: 22747075
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of rhodamine loaded PEG-g-PLA nanoparticles (NPs): effect of poly(ethylene glycol) grafting density.
    Essa S; Rabanel JM; Hildgen P
    Int J Pharm; 2011 Jun; 411(1-2):178-87. PubMed ID: 21458551
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Amine-containing core-shell nanoparticles as potential drug carriers for intracellular delivery.
    Feng M; Li P
    J Biomed Mater Res A; 2007 Jan; 80(1):184-93. PubMed ID: 17019724
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.