These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
221 related articles for article (PubMed ID: 23966358)
1. Effects of ocean warming and acidification on the energy budget of an excavating sponge. Fang JK; Schönberg CH; Mello-Athayde MA; Hoegh-Guldberg O; Dove S Glob Chang Biol; 2014 Apr; 20(4):1043-54. PubMed ID: 23966358 [TBL] [Abstract][Full Text] [Related]
2. Sponge biomass and bioerosion rates increase under ocean warming and acidification. Fang JK; Mello-Athayde MA; Schönberg CH; Kline DI; Hoegh-Guldberg O; Dove S Glob Chang Biol; 2013 Dec; 19(12):3581-91. PubMed ID: 23893528 [TBL] [Abstract][Full Text] [Related]
3. Bleaching and mortality of a photosymbiotic bioeroding sponge under future carbon dioxide emission scenarios. Fang JKH; Schönberg CHL; Mello-Athayde MA; Achlatis M; Hoegh-Guldberg O; Dove S Oecologia; 2018 May; 187(1):25-35. PubMed ID: 29574578 [TBL] [Abstract][Full Text] [Related]
4. Sponge bioerosion on changing reefs: ocean warming poses physiological constraints to the success of a photosymbiotic excavating sponge. Achlatis M; van der Zande RM; Schönberg CHL; Fang JKH; Hoegh-Guldberg O; Dove S Sci Rep; 2017 Sep; 7(1):10705. PubMed ID: 28878236 [TBL] [Abstract][Full Text] [Related]
5. The bioeroding sponge Cliona orientalis will not tolerate future projected ocean warming. Ramsby BD; Hoogenboom MO; Smith HA; Whalan S; Webster NS Sci Rep; 2018 May; 8(1):8302. PubMed ID: 29844349 [TBL] [Abstract][Full Text] [Related]
6. Sponge erosion under acidification and warming scenarios: differential impacts on living and dead coral. Stubler AD; Furman BT; Peterson BJ Glob Chang Biol; 2015 Nov; 21(11):4006-20. PubMed ID: 26087148 [TBL] [Abstract][Full Text] [Related]
7. Bleaching events regulate shifts from corals to excavating sponges in algae-dominated reefs. Chaves-Fonnegra A; Riegl B; Zea S; Lopez JV; Smith T; Brandt M; Gilliam DS Glob Chang Biol; 2018 Feb; 24(2):773-785. PubMed ID: 29076634 [TBL] [Abstract][Full Text] [Related]
8. Elevated seawater temperature disrupts the microbiome of an ecologically important bioeroding sponge. Ramsby BD; Hoogenboom MO; Whalan S; Webster NS Mol Ecol; 2018 Apr; 27(8):2124-2137. PubMed ID: 29473977 [TBL] [Abstract][Full Text] [Related]
9. Comparative transcriptomics reveals altered species interaction between the bioeroding sponge Cliona varians and the coral Porites furcata under ocean acidification. DeBiasse MB; Stubler AD; Kelly MW Mol Ecol; 2022 May; 31(10):3002-3017. PubMed ID: 35303383 [TBL] [Abstract][Full Text] [Related]
10. Elucidating the sponge stress response; lipids and fatty acids can facilitate survival under future climate scenarios. Bennett H; Bell JJ; Davy SK; Webster NS; Francis DS Glob Chang Biol; 2018 Jul; 24(7):3130-3144. PubMed ID: 29505691 [TBL] [Abstract][Full Text] [Related]
11. Ocean acidification accelerates reef bioerosion. Wisshak M; Schönberg CH; Form A; Freiwald A PLoS One; 2012; 7(9):e45124. PubMed ID: 23028797 [TBL] [Abstract][Full Text] [Related]
12. Single-cell measurement of ammonium and bicarbonate uptake within a photosymbiotic bioeroding sponge. Achlatis M; Pernice M; Green K; Guagliardo P; Kilburn MR; Hoegh-Guldberg O; Dove S ISME J; 2018 May; 12(5):1308-1318. PubMed ID: 29386628 [TBL] [Abstract][Full Text] [Related]
13. Sibling species of mutualistic Symbiodinium clade G from bioeroding sponges in the western Pacific and western Atlantic oceans. Ramsby BD; Hill MS; Thornhill DJ; Steenhuizen SF; Achlatis M; Lewis AM; LaJeunesse TC J Phycol; 2017 Oct; 53(5):951-960. PubMed ID: 28796903 [TBL] [Abstract][Full Text] [Related]
14. Ocean acidification and warming scenarios increase microbioerosion of coral skeletons. Reyes-Nivia C; Diaz-Pulido G; Kline D; Guldberg OH; Dove S Glob Chang Biol; 2013 Jun; 19(6):1919-29. PubMed ID: 23505093 [TBL] [Abstract][Full Text] [Related]
15. Future reef decalcification under a business-as-usual CO2 emission scenario. Dove SG; Kline DI; Pantos O; Angly FE; Tyson GW; Hoegh-Guldberg O Proc Natl Acad Sci U S A; 2013 Sep; 110(38):15342-7. PubMed ID: 24003127 [TBL] [Abstract][Full Text] [Related]
16. Heterotrophic plasticity and resilience in bleached corals. Grottoli AG; Rodrigues LJ; Palardy JE Nature; 2006 Apr; 440(7088):1186-9. PubMed ID: 16641995 [TBL] [Abstract][Full Text] [Related]
17. Coral energy reserves and calcification in a high-CO2 world at two temperatures. Schoepf V; Grottoli AG; Warner ME; Cai WJ; Melman TF; Hoadley KD; Pettay DT; Hu X; Li Q; Xu H; Wang Y; Matsui Y; Baumann JH PLoS One; 2013; 8(10):e75049. PubMed ID: 24146747 [TBL] [Abstract][Full Text] [Related]
18. Boosted nutritional quality of food by CO Leung JYS; Nagelkerken I; Russell BD; Ferreira CM; Connell SD Sci Total Environ; 2018 Oct; 639():360-366. PubMed ID: 29791888 [TBL] [Abstract][Full Text] [Related]
19. Zooxanthellar symbionts shape host sponge trophic status through translocation of carbon. Weisz JB; Massaro AJ; Ramsby BD; Hill MS Biol Bull; 2010 Dec; 219(3):189-97. PubMed ID: 21183440 [TBL] [Abstract][Full Text] [Related]