BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 23966637)

  • 1. Land-use change, not climate, controls organic carbon burial in lakes.
    Anderson NJ; Dietz RD; Engstrom DR
    Proc Biol Sci; 2013 Oct; 280(1769):20131278. PubMed ID: 23966637
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lake eutrophication and its implications for organic carbon sequestration in Europe.
    Anderson NJ; Bennion H; Lotter AF
    Glob Chang Biol; 2014 Sep; 20(9):2741-51. PubMed ID: 24677531
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Organic carbon sequestration in sediments of subtropical Florida lakes.
    Waters MN; Kenney WF; Brenner M; Webster BC
    PLoS One; 2019; 14(12):e0226273. PubMed ID: 31834911
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Carbon and Nitrogen Burial and Response to Climate Change and Anthropogenic Disturbance in Chaohu Lake, China.
    Yu Q; Wang F; Yan W; Zhang F; Lv S; Li Y
    Int J Environ Res Public Health; 2018 Dec; 15(12):. PubMed ID: 30518045
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Organic Carbon Burial in Lakes and Reservoirs of the Conterminous United States.
    Clow DW; Stackpoole SM; Verdin KL; Butman DE; Zhu Z; Krabbenhoft DP; Striegl RG
    Environ Sci Technol; 2015 Jul; 49(13):7614-22. PubMed ID: 26061185
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Humic substances-part 7: the biogeochemistry of dissolved organic carbon and its interactions with climate change.
    Porcal P; Koprivnjak JF; Molot LA; Dillon PJ
    Environ Sci Pollut Res Int; 2009 Sep; 16(6):714-26. PubMed ID: 19462191
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Response of organic carbon burial to trophic level changes in a shallow eutrophic lake in SE China.
    Wu P; Gao C; Chen F; Yu S
    J Environ Sci (China); 2016 Aug; 46():220-8. PubMed ID: 27521954
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Carbon and nitrogen burial in a plateau lake during eutrophication and phytoplankton blooms.
    Huang C; Zhang L; Li Y; Lin C; Huang T; Zhang M; Zhu AX; Yang H; Wang X
    Sci Total Environ; 2018 Mar; 616-617():296-304. PubMed ID: 29121578
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tropical forests as drivers of lake carbon burial.
    Amora-Nogueira L; Sanders CJ; Enrich-Prast A; Sanders LSM; Abuchacra RC; Moreira-Turcq PF; Cordeiro RC; Gauci V; Moreira LS; Machado-Silva F; Libonati R; Fonseca T; Francisco CN; Marotta H
    Nat Commun; 2022 Jul; 13(1):4051. PubMed ID: 35831284
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Human impact on C/N/P accumulation in lake sediments from northeast China during the last 150 years.
    Bao K; Zhang Y; Zaccone C; Meadows ME
    Environ Pollut; 2021 Feb; 271():116345. PubMed ID: 33383417
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Carbon accumulation and sequestration of lakes in China during the Holocene.
    Wang M; Chen H; Yu Z; Wu J; Zhu Q; Peng C; Wang Y; Qin B
    Glob Chang Biol; 2015 Dec; 21(12):4436-48. PubMed ID: 26220607
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Disturbance mechanisms of lacustrine organic carbon burial: Case study of Cuopu Lake, Southwest China.
    Jiang Q; Li S; Chen Z; Huang C; Wu W; Wan H; Hu Z; Han C; Zhang Z; Yang H; Huang T
    Sci Total Environ; 2020 Dec; 746():140615. PubMed ID: 32745845
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Anthropogenic-Driven Alterations in Black Carbon Sequestration and the Structure in a Deep Plateau Lake.
    Huang C; Lu L; Li Y; He Y; Shang N; Bai Y; Yu H; Huang T; Zhu AX; Yang H; Zhao K; Yu Y
    Environ Sci Technol; 2021 May; 55(9):6467-6475. PubMed ID: 33886307
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Catchment-mediated atmospheric nitrogen deposition drives ecological change in two alpine lakes in SE Tibet.
    Hu Z; Anderson NJ; Yang X; McGowan S
    Glob Chang Biol; 2014 May; 20(5):1614-28. PubMed ID: 24132882
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spatiotemporal patterns of organic carbon burial over the last century in Lake Qinghai, the largest lake on the Tibetan Plateau.
    Meng X; Chen X; Lin Q; Liu Y; Ni Z; Sun W; Zhang E
    Sci Total Environ; 2023 Feb; 860():160449. PubMed ID: 36427744
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A century of human-induced environmental changes and the combined roles of nutrients and land use in Lake Victoria catchment on eutrophication.
    Njagi DM; Routh J; Odhiambo M; Luo C; Basapuram LG; Olago D; Klump V; Stager C
    Sci Total Environ; 2022 Aug; 835():155425. PubMed ID: 35489498
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Temperature-controlled organic carbon mineralization in lake sediments.
    Gudasz C; Bastviken D; Steger K; Premke K; Sobek S; Tranvik LJ
    Nature; 2010 Jul; 466(7305):478-81. PubMed ID: 20651689
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lake sediment records on climate change and human activities in the Xingyun Lake catchment, SW China.
    Zhang W; Ming Q; Shi Z; Chen G; Niu J; Lei G; Chang F; Zhang H
    PLoS One; 2014; 9(7):e102167. PubMed ID: 25033404
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Historical accumulation of N and P and sources of organic matter and N in sediment in an agricultural reservoir in Northern China.
    Ni Z; Wang S; Chu Z; Jin X
    Environ Sci Pollut Res Int; 2015 Jul; 22(13):9951-64. PubMed ID: 25663341
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Economic development influences on sediment-bound nitrogen and phosphorus accumulation of lakes in China.
    Ni Z; Wang S
    Environ Sci Pollut Res Int; 2015 Dec; 22(23):18561-73. PubMed ID: 26385856
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.