These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
226 related articles for article (PubMed ID: 23966685)
1. Signals governing the trafficking and mistrafficking of a ciliary GPCR, rhodopsin. Lodowski KH; Lee R; Ropelewski P; Nemet I; Tian G; Imanishi Y J Neurosci; 2013 Aug; 33(34):13621-38. PubMed ID: 23966685 [TBL] [Abstract][Full Text] [Related]
2. Disrupted Plasma Membrane Protein Homeostasis in a Ropelewski P; Imanishi Y J Neurosci; 2019 Jul; 39(28):5581-5593. PubMed ID: 31061086 [TBL] [Abstract][Full Text] [Related]
3. Rhodopsin Trafficking and Mistrafficking: Signals, Molecular Components, and Mechanisms. Nemet I; Ropelewski P; Imanishi Y Prog Mol Biol Transl Sci; 2015; 132():39-71. PubMed ID: 26055054 [TBL] [Abstract][Full Text] [Related]
4. Monitoring of rhodopsin trafficking and mistrafficking in live photoreceptors. Lodowski KH; Imanishi Y Methods Mol Biol; 2015; 1271():293-307. PubMed ID: 25697531 [TBL] [Abstract][Full Text] [Related]
5. Identification of an outer segment targeting signal in the COOH terminus of rhodopsin using transgenic Xenopus laevis. Tam BM; Moritz OL; Hurd LB; Papermaster DS J Cell Biol; 2000 Dec; 151(7):1369-80. PubMed ID: 11134067 [TBL] [Abstract][Full Text] [Related]
6. Retrograde intraciliary trafficking of opsin during the maintenance of cone-shaped photoreceptor outer segments of Xenopus laevis. Tian G; Lodowski KH; Lee R; Imanishi Y J Comp Neurol; 2014 Nov; 522(16):3577-3589. PubMed ID: 24855015 [TBL] [Abstract][Full Text] [Related]
7. The severe autosomal dominant retinitis pigmentosa rhodopsin mutant Ter349Glu mislocalizes and induces rapid rod cell death. Hollingsworth TJ; Gross AK J Biol Chem; 2013 Oct; 288(40):29047-55. PubMed ID: 23940033 [TBL] [Abstract][Full Text] [Related]
8. Ciliary targeting motif VxPx directs assembly of a trafficking module through Arf4. Mazelova J; Astuto-Gribble L; Inoue H; Tam BM; Schonteich E; Prekeris R; Moritz OL; Randazzo PA; Deretic D EMBO J; 2009 Feb; 28(3):183-92. PubMed ID: 19153612 [TBL] [Abstract][Full Text] [Related]
9. Submembrane assembly and renewal of rod photoreceptor cGMP-gated channel: insight into the actin-dependent process of outer segment morphogenesis. Nemet I; Tian G; Imanishi Y J Neurosci; 2014 Jun; 34(24):8164-74. PubMed ID: 24920621 [TBL] [Abstract][Full Text] [Related]
10. Rhodopsin mislocalization drives ciliary dysregulation in a novel autosomal dominant retinitis pigmentosa knock-in mouse model. Takita S; Jahan S; S Imanishi S; Harikrishnan H; LePage D; Mann RJ; Conlon RA; Miyagi M; Imanishi Y FASEB J; 2024 Apr; 38(8):e23606. PubMed ID: 38648465 [TBL] [Abstract][Full Text] [Related]
11. Comparison of Ciliary Targeting of Two Rhodopsin-Like GPCRs: Role of C-Terminal Localization Sequences in Relation to Cilium Type. Chadha A; Paniagua AE; Williams DS J Neurosci; 2021 Sep; 41(36):7514-7531. PubMed ID: 34301828 [TBL] [Abstract][Full Text] [Related]
12. A functional rhodopsin-green fluorescent protein fusion protein localizes correctly in transgenic Xenopus laevis retinal rods and is expressed in a time-dependent pattern. Moritz OL; Tam BM; Papermaster DS; Nakayama T J Biol Chem; 2001 Jul; 276(30):28242-51. PubMed ID: 11350960 [TBL] [Abstract][Full Text] [Related]
13. The role of rhodopsin glycosylation in protein folding, trafficking, and light-sensitive retinal degeneration. Tam BM; Moritz OL J Neurosci; 2009 Dec; 29(48):15145-54. PubMed ID: 19955366 [TBL] [Abstract][Full Text] [Related]
14. The regulation of retina specific expression of rhodopsin gene in vertebrates. Zhang T; Tan YH; Fu J; Lui D; Ning Y; Jirik FR; Brenner S; Venkatesh B Gene; 2003 Aug; 313():189-200. PubMed ID: 12957390 [TBL] [Abstract][Full Text] [Related]
15. Defective trafficking of rhodopsin and its role in retinal degenerations. Hollingsworth TJ; Gross AK Int Rev Cell Mol Biol; 2012; 293():1-44. PubMed ID: 22251557 [TBL] [Abstract][Full Text] [Related]
16. Untangling ciliary access and enrichment of two rhodopsin-like receptors using quantitative fluorescence microscopy reveals cell-specific sorting pathways. Geneva II; Tan HY; Calvert PD Mol Biol Cell; 2017 Feb; 28(4):554-566. PubMed ID: 27974638 [TBL] [Abstract][Full Text] [Related]
17. The G protein-coupled receptor rhodopsin: a historical perspective. Hofmann L; Palczewski K Methods Mol Biol; 2015; 1271():3-18. PubMed ID: 25697513 [TBL] [Abstract][Full Text] [Related]
18. Transgenic expression of a GFP-rhodopsin COOH-terminal fusion protein in zebrafish rod photoreceptors. Perkins BD; Kainz PM; O'Malley DM; Dowling JE Vis Neurosci; 2002; 19(4):257R-264R. PubMed ID: 12511087 [TBL] [Abstract][Full Text] [Related]
19. Hydrophobic interaction between the TM1 and H8 is essential for rhodopsin trafficking to vertebrate photoreceptor outer segments. Verma DK; Malhotra H; Woellert T; Calvert PD J Biol Chem; 2023 Dec; 299(12):105412. PubMed ID: 37918805 [TBL] [Abstract][Full Text] [Related]
20. The Arf GAP ASAP1 provides a platform to regulate Arf4- and Rab11-Rab8-mediated ciliary receptor targeting. Wang J; Morita Y; Mazelova J; Deretic D EMBO J; 2012 Oct; 31(20):4057-71. PubMed ID: 22983554 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]