These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 23966685)

  • 21. Aberrant protein trafficking in retinal degenerations: The initial phase of retinal remodeling.
    Bales KL; Gross AK
    Exp Eye Res; 2016 Sep; 150():71-80. PubMed ID: 26632497
    [TBL] [Abstract][Full Text] [Related]  

  • 22. An improved rhodopsin/EGFP fusion protein for use in the generation of transgenic Xenopus laevis.
    Jin S; McKee TD; Oprian DD
    FEBS Lett; 2003 May; 542(1-3):142-6. PubMed ID: 12729914
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Transgenic expression of a GFP-rhodopsin COOH-terminal fusion protein in zebrafish rod photoreceptors.
    Perkins BD; Kainz PM; O'Malley DM; Dowling JE
    Vis Neurosci; 2002; 19(3):257-64. PubMed ID: 12392175
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A role for rhodopsin in a signal transduction cascade that regulates membrane trafficking and photoreceptor polarity.
    Deretic D
    Vision Res; 2006 Dec; 46(27):4427-33. PubMed ID: 17010408
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Autophagy in
    Wen RH; Stanar P; Tam B; Moritz OL
    Autophagy; 2019 Nov; 15(11):1970-1989. PubMed ID: 30975014
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mislocalized rhodopsin does not require activation to cause retinal degeneration and neurite outgrowth in Xenopus laevis.
    Tam BM; Xie G; Oprian DD; Moritz OL
    J Neurosci; 2006 Jan; 26(1):203-9. PubMed ID: 16399688
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Xenopus laevis P23H rhodopsin transgene causes rod photoreceptor degeneration that is more severe in the ventral retina and is modulated by light.
    Zhang R; Oglesby E; Marsh-Armstrong N
    Exp Eye Res; 2008 Apr; 86(4):612-21. PubMed ID: 18291367
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Rhodopsin C terminus, the site of mutations causing retinal disease, regulates trafficking by binding to ADP-ribosylation factor 4 (ARF4).
    Deretic D; Williams AH; Ransom N; Morel V; Hargrave PA; Arendt A
    Proc Natl Acad Sci U S A; 2005 Mar; 102(9):3301-6. PubMed ID: 15728366
    [TBL] [Abstract][Full Text] [Related]  

  • 29. RPE Cells Engulf Microvesicles Secreted by Degenerating Rod Photoreceptors.
    Ropelewski P; Imanishi Y
    eNeuro; 2020; 7(3):. PubMed ID: 32376599
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Impact of signaling microcompartment geometry on GPCR dynamics in live retinal photoreceptors.
    Najafi M; Haeri M; Knox BE; Schiesser WE; Calvert PD
    J Gen Physiol; 2012 Sep; 140(3):249-66. PubMed ID: 22891277
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Rpgrip1 is required for rod outer segment development and ciliary protein trafficking in zebrafish.
    Raghupathy RK; Zhang X; Liu F; Alhasani RH; Biswas L; Akhtar S; Pan L; Moens CB; Li W; Liu M; Kennedy BN; Shu X
    Sci Rep; 2017 Dec; 7(1):16881. PubMed ID: 29203866
    [TBL] [Abstract][Full Text] [Related]  

  • 32. An unconventional secretory pathway mediates the cilia targeting of peripherin/rds.
    Tian G; Ropelewski P; Nemet I; Lee R; Lodowski KH; Imanishi Y
    J Neurosci; 2014 Jan; 34(3):992-1006. PubMed ID: 24431457
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Assay for in vitro budding of ciliary-targeted rhodopsin transport carriers.
    Deretic D; Mazelova J
    Methods Cell Biol; 2009; 94():241-57. PubMed ID: 20362094
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Small GTPases Rab8a and Rab11a Are Dispensable for Rhodopsin Transport in Mouse Photoreceptors.
    Ying G; Gerstner CD; Frederick JM; Boye SL; Hauswirth WW; Baehr W
    PLoS One; 2016; 11(8):e0161236. PubMed ID: 27529348
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Identification of a VxP Targeting Signal in the Flagellar Na+ /K+ -ATPase.
    Laird JG; Pan Y; Modestou M; Yamaguchi DM; Song H; Sokolov M; Baker SA
    Traffic; 2015 Dec; 16(12):1239-53. PubMed ID: 26373354
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ins and outs of GPCR signaling in primary cilia.
    Schou KB; Pedersen LB; Christensen ST
    EMBO Rep; 2015 Sep; 16(9):1099-113. PubMed ID: 26297609
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The Arf and Rab11 effector FIP3 acts synergistically with ASAP1 to direct Rabin8 in ciliary receptor targeting.
    Wang J; Deretic D
    J Cell Sci; 2015 Apr; 128(7):1375-85. PubMed ID: 25673879
    [TBL] [Abstract][Full Text] [Related]  

  • 38. In situ visualization of protein interactions in sensory neurons: glutamic acid-rich proteins (GARPs) play differential roles for photoreceptor outer segment scaffolding.
    Ritter LM; Khattree N; Tam B; Moritz OL; Schmitz F; Goldberg AF
    J Neurosci; 2011 Aug; 31(31):11231-43. PubMed ID: 21813684
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Characterization of peripherin/rds and rom-1 transport in rod photoreceptors of transgenic and knockout animals.
    Lee ES; Burnside B; Flannery JG
    Invest Ophthalmol Vis Sci; 2006 May; 47(5):2150-60. PubMed ID: 16639027
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Dark rearing rescues P23H rhodopsin-induced retinal degeneration in a transgenic Xenopus laevis model of retinitis pigmentosa: a chromophore-dependent mechanism characterized by production of N-terminally truncated mutant rhodopsin.
    Tam BM; Moritz OL
    J Neurosci; 2007 Aug; 27(34):9043-53. PubMed ID: 17715341
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.