BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 23966849)

  • 21. Relevance of fatty acid oxidation in regulation of the outer mitochondrial membrane permeability for ADP.
    Toleikis A; Liobikas J; Trumbeckaite S; Majiene D
    FEBS Lett; 2001 Dec; 509(2):245-9. PubMed ID: 11741597
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Dynamic simulations on the mitochondrial fatty acid beta-oxidation network.
    Modre-Osprian R; Osprian I; Tilg B; Schreier G; Weinberger KM; Graber A
    BMC Syst Biol; 2009 Jan; 3():2. PubMed ID: 19126203
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Inhibition in vitro of acyl-CoA dehydrogenases by 2-mercaptoacetate in rat liver mitochondria.
    Bauché F; Sabourault D; Giudicelli Y; Nordmann J; Nordmann R
    Biochem J; 1983 Dec; 215(3):457-64. PubMed ID: 6661181
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effect of methylglyoxal bis(guanylhydrazone) on hepatic, heart and skeletal muscle mitochondrial carnitine palmitoyltransferase and beta-oxidation of fatty acids.
    Brady LJ; Brady PS; Gandour RD
    Biochem Pharmacol; 1987 Feb; 36(4):447-52. PubMed ID: 3827937
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Biochemical effects of the hypoglycaemic compound pent-4-enoic acid and related non-hypoglycaemic fatty acids. Effects of the free acids and their carnitine esters on coenzyme A-dependent oxidations in rat liver mitochondria.
    Holland PC; Sherratt HS
    Biochem J; 1973 Sep; 136(1):157-71. PubMed ID: 4772622
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Carnitine palmitoyltransferase I control of acetogenesis, the major pathway of fatty acid {beta}-oxidation in liver of neonatal swine.
    Lin X; Shim K; Odle J
    Am J Physiol Regul Integr Comp Physiol; 2010 May; 298(5):R1435-43. PubMed ID: 20237302
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Peroxisomal beta-oxidation is a significant pathway for catabolism of fatty acids in a marine teleost.
    Crockett EL; Sidell BD
    Am J Physiol; 1993 May; 264(5 Pt 2):R1004-9. PubMed ID: 8098915
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Intramitochondrial factors controlling hepatic fatty acid oxidation at weaning in the rat.
    Decaux JF; Robin D; Robin P; Ferré P; Girard J
    FEBS Lett; 1988 May; 232(1):156-8. PubMed ID: 2896605
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Aspects of long-chain acyl-COA metabolism.
    Tol VA
    Mol Cell Biochem; 1975 Apr; 7(1):19-31. PubMed ID: 1134497
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effect of dietary alpha-linolenic acid on the activity and gene expression of hepatic fatty acid oxidation enzymes.
    Ide T
    Biofactors; 2000; 13(1-4):9-14. PubMed ID: 11237206
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Some aspects of fatty acid oxidation in isolated fat-cell mitochondria from rat.
    Harper RD; Saggerson ED
    Biochem J; 1975 Dec; 152(3):485-94. PubMed ID: 1227502
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Fatty acid oxidation by skeletal muscle homogenates from morbidly obese black and white American women.
    Privette JD; Hickner RC; Macdonald KG; Pories WJ; Barakat HA
    Metabolism; 2003 Jun; 52(6):735-8. PubMed ID: 12800100
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Propionyl-L-carnitine as potential protective agent against adriamycin-induced impairment of fatty acid beta-oxidation in isolated heart mitochondria.
    Sayed-Ahmed MM; Shouman SA; Rezk BM; Khalifa MH; Osman AM; El-Merzabani MM
    Pharmacol Res; 2000 Feb; 41(2):143-50. PubMed ID: 10623482
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Kinetic advantage of the interaction between the fatty acid beta-oxidation enzymes and the complexes of the respiratory chain.
    Sumegi B; Porpaczy Z; Alkonyi I
    Biochim Biophys Acta; 1991 Jan; 1081(2):121-8. PubMed ID: 1998730
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Long-chain acyl-CoA ester intermediates of beta-oxidation of mono- and di-carboxylic fatty acids by extracts of Corynebacterium sp. strain 7E1C.
    Broadway NM; Dickinson FM; Ratledge C
    Biochem J; 1992 Jul; 285 ( Pt 1)(Pt 1):117-22. PubMed ID: 1637289
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Differential inhibitory effect of long-chain acyl-CoA esters on succinate and glutamate transport into rat liver mitochondria and its possible implications for long-chain fatty acid oxidation defects.
    Ventura FV; Ruiter J; Ijlst L; de Almeida IT; Wanders RJ
    Mol Genet Metab; 2005 Nov; 86(3):344-52. PubMed ID: 16176879
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Compartmentation of dicarboxylic acid beta-oxidation in rat liver: importance of peroxisomes in the metabolism of dicarboxylic acids.
    Suzuki H; Yamada J; Watanabe T; Suga T
    Biochim Biophys Acta; 1989 Jan; 990(1):25-30. PubMed ID: 2914148
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Comparison of metabolic fluxes of cis-5-enoyl-CoA and saturated acyl-CoA through the beta-oxidation pathway.
    Tserng KY; Chen LS; Jin SJ
    Biochem J; 1995 Apr; 307 ( Pt 1)(Pt 1):23-8. PubMed ID: 7717980
    [TBL] [Abstract][Full Text] [Related]  

  • 39. 3-Mercaptopropionic acid, a potent inhibitor of fatty acid oxidation in rat heart mitochondria.
    Sabbagh E; Cuebas D; Schulz H
    J Biol Chem; 1985 Jun; 260(12):7337-42. PubMed ID: 3997873
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Energy-linked regulation of mitochondrial fatty acid oxidation in the isolated perfused rat heart.
    Latipää PM
    J Mol Cell Cardiol; 1989 Aug; 21(8):765-71. PubMed ID: 2778813
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.