BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

355 related articles for article (PubMed ID: 23966911)

  • 1. Reorganization of neuronal circuits of the central olfactory system during postprandial sleep.
    Yamaguchi M; Manabe H; Murata K; Mori K
    Front Neural Circuits; 2013; 7():132. PubMed ID: 23966911
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Top-down inputs from the olfactory cortex in the postprandial period promote elimination of granule cells in the olfactory bulb.
    Komano-Inoue S; Manabe H; Ota M; Kusumoto-Yoshida I; Yokoyama TK; Mori K; Yamaguchi M
    Eur J Neurosci; 2014 Sep; 40(5):2724-33. PubMed ID: 25041475
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of sleep in the plasticity of the olfactory system.
    Yamaguchi M
    Neurosci Res; 2017 May; 118():21-29. PubMed ID: 28501498
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Olfactory cortex generates synchronized top-down inputs to the olfactory bulb during slow-wave sleep.
    Manabe H; Kusumoto-Yoshida I; Ota M; Mori K
    J Neurosci; 2011 Jun; 31(22):8123-33. PubMed ID: 21632934
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sharp wave-associated synchronized inputs from the piriform cortex activate olfactory tubercle neurons during slow-wave sleep.
    Narikiyo K; Manabe H; Mori K
    J Neurophysiol; 2014 Jan; 111(1):72-81. PubMed ID: 24108798
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Circuit formation and maintenance--perspectives from the mammalian olfactory bulb.
    Adam Y; Mizrahi A
    Curr Opin Neurobiol; 2010 Feb; 20(1):134-40. PubMed ID: 20005696
    [TBL] [Abstract][Full Text] [Related]  

  • 7. GABAB Receptors Tune Cortical Feedback to the Olfactory Bulb.
    Mazo C; Lepousez G; Nissant A; Valley MT; Lledo PM
    J Neurosci; 2016 Aug; 36(32):8289-304. PubMed ID: 27511004
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Continuous postnatal neurogenesis contributes to formation of the olfactory bulb neural circuits and flexible olfactory associative learning.
    Sakamoto M; Ieki N; Miyoshi G; Mochimaru D; Miyachi H; Imura T; Yamaguchi M; Fishell G; Mori K; Kageyama R; Imayoshi I
    J Neurosci; 2014 Apr; 34(17):5788-99. PubMed ID: 24760839
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Role of Adult-Born Neurons in the Constantly Changing Olfactory Bulb Network.
    Malvaut S; Saghatelyan A
    Neural Plast; 2016; 2016():1614329. PubMed ID: 26839709
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of intraglomerular circuits in shaping temporally structured responses to naturalistic inhalation-driven sensory input to the olfactory bulb.
    Carey RM; Sherwood WE; Shipley MT; Borisyuk A; Wachowiak M
    J Neurophysiol; 2015 May; 113(9):3112-29. PubMed ID: 25717156
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spatial Structure of Synchronized Inhibition in the Olfactory Bulb.
    Arnson HA; Strowbridge BW
    J Neurosci; 2017 Oct; 37(43):10468-10480. PubMed ID: 28947574
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Construction of functional neuronal circuitry in the olfactory bulb.
    Imai T
    Semin Cell Dev Biol; 2014 Nov; 35():180-8. PubMed ID: 25084319
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Elimination of adult-born neurons in the olfactory bulb is promoted during the postprandial period.
    Yokoyama TK; Mochimaru D; Murata K; Manabe H; Kobayakawa K; Kobayakawa R; Sakano H; Mori K; Yamaguchi M
    Neuron; 2011 Sep; 71(5):883-97. PubMed ID: 21903081
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Newborn neurons in the adult olfactory bulb: unique properties for specific odor behavior.
    Breton-Provencher V; Saghatelyan A
    Behav Brain Res; 2012 Feb; 227(2):480-9. PubMed ID: 21843557
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Subtype of Olfactory Bulb Interneurons Is Required for Odor Detection and Discrimination Behaviors.
    Takahashi H; Ogawa Y; Yoshihara S; Asahina R; Kinoshita M; Kitano T; Kitsuki M; Tatsumi K; Okuda M; Tatsumi K; Wanaka A; Hirai H; Stern PL; Tsuboi A
    J Neurosci; 2016 Aug; 36(31):8210-27. PubMed ID: 27488640
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CCKergic Tufted Cells Differentially Drive Two Anatomically Segregated Inhibitory Circuits in the Mouse Olfactory Bulb.
    Sun X; Liu X; Starr ER; Liu S
    J Neurosci; 2020 Aug; 40(32):6189-6206. PubMed ID: 32605937
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Integrating new neurons into the adult olfactory bulb: joining the network, life-death decisions, and the effects of sensory experience.
    Lledo PM; Saghatelyan A
    Trends Neurosci; 2005 May; 28(5):248-54. PubMed ID: 15866199
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cell-Type-Specific Modulation of Sensory Responses in Olfactory Bulb Circuits by Serotonergic Projections from the Raphe Nuclei.
    Brunert D; Tsuno Y; Rothermel M; Shipley MT; Wachowiak M
    J Neurosci; 2016 Jun; 36(25):6820-35. PubMed ID: 27335411
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Wiring stability of the adult Drosophila olfactory circuit after lesion.
    Berdnik D; Chihara T; Couto A; Luo L
    J Neurosci; 2006 Mar; 26(13):3367-76. PubMed ID: 16571743
    [TBL] [Abstract][Full Text] [Related]  

  • 20. GABAergic Input From the Basal Forebrain Promotes the Survival of Adult-Born Neurons in the Mouse Olfactory Bulb.
    Hanson E; Swanson J; Arenkiel BR
    Front Neural Circuits; 2020; 14():17. PubMed ID: 32390805
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.