These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 23966968)

  • 1. How can audiovisual pathways enhance the temporal resolution of time-compressed speech in blind subjects?
    Hertrich I; Dietrich S; Ackermann H
    Front Psychol; 2013; 4():530. PubMed ID: 23966968
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Network Modeling for Functional Magnetic Resonance Imaging (fMRI) Signals during Ultra-Fast Speech Comprehension in Late-Blind Listeners.
    Dietrich S; Hertrich I; Ackermann H
    PLoS One; 2015; 10(7):e0132196. PubMed ID: 26148062
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tracking the speech signal--time-locked MEG signals during perception of ultra-fast and moderately fast speech in blind and in sighted listeners.
    Hertrich I; Dietrich S; Ackermann H
    Brain Lang; 2013 Jan; 124(1):9-21. PubMed ID: 23332808
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultra-fast speech comprehension in blind subjects engages primary visual cortex, fusiform gyrus, and pulvinar - a functional magnetic resonance imaging (fMRI) study.
    Dietrich S; Hertrich I; Ackermann H
    BMC Neurosci; 2013 Jul; 14():74. PubMed ID: 23879896
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cortical phase locking to accelerated speech in blind and sighted listeners prior to and after training.
    Hertrich I; Dietrich S; Ackermann H
    Brain Lang; 2018 Oct; 185():19-29. PubMed ID: 30025355
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cross-modal interactions during perception of audiovisual speech and nonspeech signals: an fMRI study.
    Hertrich I; Dietrich S; Ackermann H
    J Cogn Neurosci; 2011 Jan; 23(1):221-37. PubMed ID: 20044895
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Training of ultra-fast speech comprehension induces functional reorganization of the central-visual system in late-blind humans.
    Dietrich S; Hertrich I; Ackermann H
    Front Hum Neurosci; 2013; 7():701. PubMed ID: 24167485
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experience-related structural changes of degenerated occipital white matter in late-blind humans - a diffusion tensor imaging study.
    Dietrich S; Hertrich I; Kumar V; Ackermann H
    PLoS One; 2015; 10(4):e0122863. PubMed ID: 25830371
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced speech perception capabilities in a blind listener are associated with activation of fusiform gyrus and primary visual cortex.
    Hertrich I; Dietrich S; Moos A; Trouvain J; Ackermann H
    Neurocase; 2009; 15(2):163-70. PubMed ID: 19241219
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neural pathways for visual speech perception.
    Bernstein LE; Liebenthal E
    Front Neurosci; 2014; 8():386. PubMed ID: 25520611
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reading speech from still and moving faces: the neural substrates of visible speech.
    Calvert GA; Campbell R
    J Cogn Neurosci; 2003 Jan; 15(1):57-70. PubMed ID: 12590843
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Visual speech alters the discrimination and identification of non-intact auditory speech in children with hearing loss.
    Jerger S; Damian MF; McAlpine RP; Abdi H
    Int J Pediatr Otorhinolaryngol; 2017 Mar; 94():127-137. PubMed ID: 28167003
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The contribution of visual areas to speech comprehension: a PET study in cochlear implants patients and normal-hearing subjects.
    Giraud AL; Truy E
    Neuropsychologia; 2002; 40(9):1562-9. PubMed ID: 11985837
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spatial and temporal factors during processing of audiovisual speech: a PET study.
    Macaluso E; George N; Dolan R; Spence C; Driver J
    Neuroimage; 2004 Feb; 21(2):725-32. PubMed ID: 14980575
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Physical and perceptual factors shape the neural mechanisms that integrate audiovisual signals in speech comprehension.
    Lee H; Noppeney U
    J Neurosci; 2011 Aug; 31(31):11338-50. PubMed ID: 21813693
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adaptive changes in early and late blind: a FMRI study of verb generation to heard nouns.
    Burton H; Snyder AZ; Diamond JB; Raichle ME
    J Neurophysiol; 2002 Dec; 88(6):3359-71. PubMed ID: 12466452
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of congruent and incongruent visual cues on speech perception and brain activity in cochlear implant users.
    Song JJ; Lee HJ; Kang H; Lee DS; Chang SO; Oh SH
    Brain Struct Funct; 2015 Mar; 220(2):1109-25. PubMed ID: 24402676
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional Preference for Object Sounds and Voices in the Brain of Early Blind and Sighted Individuals.
    Dormal G; Pelland M; Rezk M; Yakobov E; Lepore F; Collignon O
    J Cogn Neurosci; 2018 Jan; 30(1):86-106. PubMed ID: 28891782
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Visual activation and audiovisual interactions in the auditory cortex during speech perception: intracranial recordings in humans.
    Besle J; Fischer C; Bidet-Caulet A; Lecaignard F; Bertrand O; Giard MH
    J Neurosci; 2008 Dec; 28(52):14301-10. PubMed ID: 19109511
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neural Mechanisms Underlying Cross-Modal Phonetic Encoding.
    Shahin AJ; Backer KC; Rosenblum LD; Kerlin JR
    J Neurosci; 2018 Feb; 38(7):1835-1849. PubMed ID: 29263241
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.