These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 23967165)

  • 1. Contribution of genome-wide association studies to scientific research: a pragmatic approach to evaluate their impact.
    Ricigliano VA; Umeton R; Germinario L; Alma E; Briani M; Di Segni N; Montesanti D; Pierelli G; Cancrini F; Lomonaco C; Grassi F; Palmieri G; Salvetti M
    PLoS One; 2013; 8(8):e71198. PubMed ID: 23967165
    [TBL] [Abstract][Full Text] [Related]  

  • 2. GenToS: Use of Orthologous Gene Information to Prioritize Signals from Human GWAS.
    Hoppmann AS; Schlosser P; Backofen R; Lausch E; Köttgen A
    PLoS One; 2016; 11(9):e0162466. PubMed ID: 27612175
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of PrediXcan for prioritizing GWAS associations and predicting gene expression.
    Li B; Verma SS; Veturi YC; Verma A; Bradford Y; Haas DW; Ritchie MD
    Pac Symp Biocomput; 2018; 23():448-459. PubMed ID: 29218904
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Integrative pathway analysis of genome-wide association studies and gene expression data in prostate cancer.
    Jia P; Liu Y; Zhao Z
    BMC Syst Biol; 2012; 6 Suppl 3(Suppl 3):S13. PubMed ID: 23281744
    [TBL] [Abstract][Full Text] [Related]  

  • 5. GWAS Integrator: a bioinformatics tool to explore human genetic associations reported in published genome-wide association studies.
    Yu W; Yesupriya A; Wulf A; Hindorff LA; Dowling N; Khoury MJ; Gwinn M
    Eur J Hum Genet; 2011 Oct; 19(10):1095-9. PubMed ID: 21610748
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dense module searching for gene networks associated with multiple sclerosis.
    Manuel AM; Dai Y; Freeman LA; Jia P; Zhao Z
    BMC Med Genomics; 2020 Apr; 13(Suppl 5):48. PubMed ID: 32241259
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gene, pathway and network frameworks to identify epistatic interactions of single nucleotide polymorphisms derived from GWAS data.
    Liu Y; Maxwell S; Feng T; Zhu X; Elston RC; Koyutürk M; Chance MR
    BMC Syst Biol; 2012; 6 Suppl 3(Suppl 3):S15. PubMed ID: 23281810
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A new permutation strategy of pathway-based approach for genome-wide association study.
    Guo YF; Li J; Chen Y; Zhang LS; Deng HW
    BMC Bioinformatics; 2009 Dec; 10():429. PubMed ID: 20021635
    [TBL] [Abstract][Full Text] [Related]  

  • 9. GWAS analyzer: integrating genotype, phenotype and public annotation data for genome-wide association study analysis.
    Fong C; Ko DC; Wasnick M; Radey M; Miller SI; Brittnacher M
    Bioinformatics; 2010 Feb; 26(4):560-4. PubMed ID: 20053839
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Using prior information from humans to prioritize genes and gene-associated variants for complex traits in livestock.
    Raymond B; Yengo L; Costilla R; Schrooten C; Bouwman AC; Hayes BJ; Veerkamp RF; Visscher PM
    PLoS Genet; 2020 Sep; 16(9):e1008780. PubMed ID: 32925905
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bioinformatics challenges for genome-wide association studies.
    Moore JH; Asselbergs FW; Williams SM
    Bioinformatics; 2010 Feb; 26(4):445-55. PubMed ID: 20053841
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pinpointing miRNA and genes enrichment over trait-relevant tissue network in Genome-Wide Association Studies.
    Li B; Dong J; Yu J; Fan Y; Shang L; Zhou X; Bai Y
    BMC Med Genomics; 2020 Dec; 13(Suppl 11):191. PubMed ID: 33371893
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genetic variants related to physical activity or sedentary behaviour: a systematic review.
    Aasdahl L; Nilsen TIL; Meisingset I; Nordstoga AL; Evensen KAI; Paulsen J; Mork PJ; Skarpsno ES
    Int J Behav Nutr Phys Act; 2021 Jan; 18(1):15. PubMed ID: 33482856
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Alcohol Dependence Genetics: Lessons Learned From Genome-Wide Association Studies (GWAS) and Post-GWAS Analyses.
    Hart AB; Kranzler HR
    Alcohol Clin Exp Res; 2015 Aug; 39(8):1312-27. PubMed ID: 26110981
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Advances in genomic analysis of stroke: what have we learned and where are we headed?
    Lanktree MB; Dichgans M; Hegele RA
    Stroke; 2010 Apr; 41(4):825-32. PubMed ID: 20167918
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Post genome-wide association analysis: dissecting computational pathway/network-based approaches.
    Chimusa ER; Dalvie S; Dandara C; Wonkam A; Mazandu GK
    Brief Bioinform; 2019 Mar; 20(2):690-700. PubMed ID: 29701762
    [TBL] [Abstract][Full Text] [Related]  

  • 17. How powerful are summary-based methods for identifying expression-trait associations under different genetic architectures?
    Veturi Y; Ritchie MD
    Pac Symp Biocomput; 2018; 23():228-239. PubMed ID: 29218884
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Leveraging multiple gene networks to prioritize GWAS candidate genes via network representation learning.
    Wu M; Zeng W; Liu W; Lv H; Chen T; Jiang R
    Methods; 2018 Aug; 145():41-50. PubMed ID: 29874547
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pleiotropy informed adaptive association test of multiple traits using genome-wide association study summary data.
    Masotti M; Guo B; Wu B
    Biometrics; 2019 Dec; 75(4):1076-1085. PubMed ID: 31021400
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Unsupervised text mining for assessing and augmenting GWAS results.
    Ailem M; Role F; Nadif M; Demenais F
    J Biomed Inform; 2016 Apr; 60():252-9. PubMed ID: 26911523
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.