These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 23968071)

  • 1. Single string based global optimizer for geometry optimization in strongly coupled finite clusters: An adaptive mutation-driven strategy.
    Sarkar K; Bhattacharyya SP
    J Chem Phys; 2013 Aug; 139(7):074106. PubMed ID: 23968071
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An adaptive immune optimization algorithm for energy minimization problems.
    Shao X; Cheng L; Cai W
    J Chem Phys; 2004 Jun; 120(24):11401-6. PubMed ID: 15268174
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An unbiased population-based search for the geometry optimization of Lennard-Jones clusters: 2 < or = N < or = 372.
    Pullan W
    J Comput Chem; 2005 Jul; 26(9):899-906. PubMed ID: 15841476
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Clever and efficient method for searching optimal geometries of lennard-jones clusters.
    Takeuchi H
    J Chem Inf Model; 2006; 46(5):2066-70. PubMed ID: 16995737
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Novel method for geometry optimization of molecular clusters: application to benzene clusters.
    Takeuchi H
    J Chem Inf Model; 2007; 47(1):104-9. PubMed ID: 17238254
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ABCluster: the artificial bee colony algorithm for cluster global optimization.
    Zhang J; Dolg M
    Phys Chem Chem Phys; 2015 Oct; 17(37):24173-81. PubMed ID: 26327507
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Global minimum geometries of acetylene clusters (HCCH)n with n < or = 55 obtained by a heuristic method combined with geometrical perturbations.
    Takeuchi H
    J Comput Chem; 2010 Jun; 31(8):1699-706. PubMed ID: 20127745
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Global optimization of binary Lennard-Jones clusters using three perturbation operators.
    Ye T; Xu R; Huang W
    J Chem Inf Model; 2011 Mar; 51(3):572-7. PubMed ID: 21332209
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Energy landscapes of atomic clusters as black box optimization benchmarks.
    Müller CL; Sbalzarini IF
    Evol Comput; 2012; 20(4):543-73. PubMed ID: 22779442
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Geometry optimization of atomic clusters using a heuristic method with dynamic lattice searching.
    Lai X; Huang W; Xu R
    J Phys Chem A; 2011 May; 115(20):5021-6. PubMed ID: 21526817
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Global Optimizer for Nanoclusters.
    Khatun M; Majumdar RS; Anoop A
    Front Chem; 2019; 7():644. PubMed ID: 31612127
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On the use of different potential energy functions in rare-gas cluster optimization by genetic algorithms: application to argon clusters.
    Marques JM; Pereira FB; Leitão T
    J Phys Chem A; 2008 Jul; 112(27):6079-89. PubMed ID: 18547035
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimization methods for finding minimum energy paths.
    Sheppard D; Terrell R; Henkelman G
    J Chem Phys; 2008 Apr; 128(13):134106. PubMed ID: 18397052
    [TBL] [Abstract][Full Text] [Related]  

  • 14. PDECO: parallel differential evolution for clusters optimization.
    Chen Z; Jiang X; Li J; Li S; Wang L
    J Comput Chem; 2013 May; 34(12):1046-59. PubMed ID: 23483577
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Particle-swarm structure prediction on clusters.
    Lv J; Wang Y; Zhu L; Ma Y
    J Chem Phys; 2012 Aug; 137(8):084104. PubMed ID: 22938215
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Combining smart darting with parallel tempering using Eckart space: application to Lennard-Jones clusters.
    Nigra P; Freeman DL; Doll JD
    J Chem Phys; 2005 Mar; 122(11):114113. PubMed ID: 15836207
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A dynamic lattice searching method for fast optimization of Lennard-Jones clusters.
    Shao X; Cheng L; Cai W
    J Comput Chem; 2004 Nov; 25(14):1693-8. PubMed ID: 15362126
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Parallel random tunneling algorithm for structural optimization of Lennard-Jones clusters up to N=330.
    Shao X; Jiang H; Cai W
    J Chem Inf Comput Sci; 2004; 44(1):193-9. PubMed ID: 14741028
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A strategy to find minimal energy nanocluster structures.
    Rogan J; Varas A; Valdivia JA; Kiwi M
    J Comput Chem; 2013 Nov; 34(29):2548-56. PubMed ID: 24037778
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A sphere-cut-splice crossover for the evolution of cluster structures.
    Chen Z; Jiang X; Li J; Li S
    J Chem Phys; 2013 Jun; 138(21):214303. PubMed ID: 23758367
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.