BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

362 related articles for article (PubMed ID: 23968194)

  • 1. Magnetic nanoparticle heating and heat transfer on a microscale: Basic principles, realities and physical limitations of hyperthermia for tumour therapy.
    Dutz S; Hergt R
    Int J Hyperthermia; 2013 Dec; 29(8):790-800. PubMed ID: 23968194
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Magnetic particle hyperthermia--a promising tumour therapy?
    Dutz S; Hergt R
    Nanotechnology; 2014 Nov; 25(45):452001. PubMed ID: 25337919
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vivo applications of magnetic nanoparticle hyperthermia.
    Hilger I
    Int J Hyperthermia; 2013 Dec; 29(8):828-34. PubMed ID: 24219800
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Magnetic multicore nanoparticles for hyperthermia--influence of particle immobilization in tumour tissue on magnetic properties.
    Dutz S; Kettering M; Hilger I; Müller R; Zeisberger M
    Nanotechnology; 2011 Jul; 22(26):265102. PubMed ID: 21576784
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Real-time infrared thermography detection of magnetic nanoparticle hyperthermia in a murine model under a non-uniform field configuration.
    Rodrigues HF; Mello FM; Branquinho LC; Zufelato N; Silveira-Lacerda EP; Bakuzis AF
    Int J Hyperthermia; 2013 Dec; 29(8):752-67. PubMed ID: 24138472
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Physics of heat generation using magnetic nanoparticles for hyperthermia.
    Dennis CL; Ivkov R
    Int J Hyperthermia; 2013 Dec; 29(8):715-29. PubMed ID: 24131317
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Accuracy of available methods for quantifying the heat power generation of nanoparticles for magnetic hyperthermia.
    Andreu I; Natividad E
    Int J Hyperthermia; 2013 Dec; 29(8):739-51. PubMed ID: 24001056
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of infusion strategy for achieving repeatable nanoparticle distribution and quantification of thermal dosage using micro-CT Hounsfield unit in magnetic nanoparticle hyperthermia.
    LeBrun A; Joglekar T; Bieberich C; Ma R; Zhu L
    Int J Hyperthermia; 2016; 32(2):132-43. PubMed ID: 26758242
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preparation of carboplatin-Fe@C-loaded chitosan nanoparticles and study on hyperthermia combined with pharmacotherapy for liver cancer.
    Li FR; Yan WH; Guo YH; Qi H; Zhou HX
    Int J Hyperthermia; 2009 Aug; 25(5):383-91. PubMed ID: 19391033
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimizing magnetic nanoparticle based thermal therapies within the physical limits of heating.
    Etheridge ML; Bischof JC
    Ann Biomed Eng; 2013 Jan; 41(1):78-88. PubMed ID: 22855120
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanoparticle distribution and temperature elevations in prostatic tumours in mice during magnetic nanoparticle hyperthermia.
    Attaluri A; Ma R; Qiu Y; Li W; Zhu L
    Int J Hyperthermia; 2011; 27(5):491-502. PubMed ID: 21756046
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A review on hyperthermia via nanoparticle-mediated therapy.
    Sohail A; Ahmad Z; Bég OA; Arshad S; Sherin L
    Bull Cancer; 2017 May; 104(5):452-461. PubMed ID: 28385267
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of magnetic nanoparticle dispersion on temperature distribution in a spherical tissue in magnetic fluid hyperthermia using the lattice Boltzmann method.
    Golneshan AA; Lahonian M
    Int J Hyperthermia; 2011; 27(3):266-74. PubMed ID: 21501028
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Relationship between physico-chemical properties of magnetic fluids and their heating capacity.
    Salas G; Veintemillas-Verdaguer S; Morales Mdel P
    Int J Hyperthermia; 2013 Dec; 29(8):768-76. PubMed ID: 24001026
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimal power deposition patterns for ideal high temperature therapy/hyperthermia treatments.
    Cheng KS; Roemer RB
    Int J Hyperthermia; 2004 Feb; 20(1):57-72. PubMed ID: 14612314
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Temperature-controlled power modulation compensates for heterogeneous nanoparticle distributions: a computational optimization analysis for magnetic hyperthermia.
    Kandala SK; Liapi E; Whitcomb LL; Attaluri A; Ivkov R
    Int J Hyperthermia; 2019; 36(1):115-129. PubMed ID: 30541354
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hyperthermia classic commentary: 'Inductive heating of ferrimagnetic particles and magnetic fluids: Physical evaluation of their potential for hyperthermia' by Andreas Jordan et al., International Journal of Hyperthermia, 1993;9:51-68.
    Jordan A
    Int J Hyperthermia; 2009 Nov; 25(7):512-6. PubMed ID: 19848613
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Magnetic fluid hyperthermia: advances, challenges, and opportunity.
    Kozissnik B; Bohorquez AC; Dobson J; Rinaldi C
    Int J Hyperthermia; 2013 Dec; 29(8):706-14. PubMed ID: 24106927
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Magnetically based enhancement of nanoparticle uptake in tumor cells: combination of magnetically induced cell labeling and magnetic heating].
    Kettering M; Winter J; Zeisberger M; Alexiou C; Bremer-Streck S; Bergemann C; Kaiser WA; Hilger I
    Rofo; 2006 Dec; 178(12):1255-60. PubMed ID: 17136650
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Magnetic hyperthermia efficiency in the cellular environment for different nanoparticle designs.
    Di Corato R; Espinosa A; Lartigue L; Tharaud M; Chat S; Pellegrino T; Ménager C; Gazeau F; Wilhelm C
    Biomaterials; 2014 Aug; 35(24):6400-11. PubMed ID: 24816363
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.