These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 23968199)

  • 1. Molecular crowding drives active Pin1 into nonspecific complexes with endogenous proteins prior to substrate recognition.
    Luh LM; Hänsel R; Löhr F; Kirchner DK; Krauskopf K; Pitzius S; Schäfer B; Tufar P; Corbeski I; Güntert P; Dötsch V
    J Am Chem Soc; 2013 Sep; 135(37):13796-803. PubMed ID: 23968199
    [TBL] [Abstract][Full Text] [Related]  

  • 2. NMR solution structure of SlyD from Escherichia coli: spatial separation of prolyl isomerase and chaperone function.
    Weininger U; Haupt C; Schweimer K; Graubner W; Kovermann M; Brüser T; Scholz C; Schaarschmidt P; Zoldak G; Schmid FX; Balbach J
    J Mol Biol; 2009 Mar; 387(2):295-305. PubMed ID: 19356587
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cooperation of the prolyl isomerase and chaperone activities of the protein folding catalyst SlyD.
    Zoldák G; Schmid FX
    J Mol Biol; 2011 Feb; 406(1):176-94. PubMed ID: 21147124
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Binding specificity of Escherichia coli trigger factor.
    Patzelt H; Rüdiger S; Brehmer D; Kramer G; Vorderwülbecke S; Schaffitzel E; Waitz A; Hesterkamp T; Dong L; Schneider-Mergener J; Bukau B; Deuerling E
    Proc Natl Acad Sci U S A; 2001 Dec; 98(25):14244-9. PubMed ID: 11724963
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transient enzyme-substrate recognition monitored by real-time NMR.
    Haupt C; Patzschke R; Weininger U; Gröger S; Kovermann M; Balbach J
    J Am Chem Soc; 2011 Jul; 133(29):11154-62. PubMed ID: 21661729
    [TBL] [Abstract][Full Text] [Related]  

  • 6. NMR solution structure and dynamics of the peptidyl-prolyl cis-trans isomerase domain of the trigger factor from Mycoplasma genitalium compared to FK506-binding protein.
    Vogtherr M; Jacobs DM; Parac TN; Maurer M; Pahl A; Saxena K; Rüterjans H; Griesinger C; Fiebig KM
    J Mol Biol; 2002 May; 318(4):1097-115. PubMed ID: 12054805
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Macromolecular crowding in biological systems: hydrodynamics and NMR methods.
    Bernadó P; García de la Torre J; Pons M
    J Mol Recognit; 2004; 17(5):397-407. PubMed ID: 15362098
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative NMR analysis of the protein G B1 domain in Xenopus laevis egg extracts and intact oocytes.
    Selenko P; Serber Z; Gadea B; Ruderman J; Wagner G
    Proc Natl Acad Sci U S A; 2006 Aug; 103(32):11904-9. PubMed ID: 16873549
    [TBL] [Abstract][Full Text] [Related]  

  • 9. NMR solution structure and characterization of substrate binding site of the PPIase domain of PrsA protein from Bacillus subtilis.
    Tossavainen H; Permi P; Purhonen SL; Sarvas M; Kilpeläinen I; Seppala R
    FEBS Lett; 2006 Mar; 580(7):1822-6. PubMed ID: 16516208
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The macromolecular crowding effect--from in vitro into the cell.
    Gnutt D; Ebbinghaus S
    Biol Chem; 2016 Jan; 397(1):37-44. PubMed ID: 26351910
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Macromolecular crowding: Macromolecules friend or foe.
    Mittal S; Chowhan RK; Singh LR
    Biochim Biophys Acta; 2015 Sep; 1850(9):1822-31. PubMed ID: 25960386
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Macromolecular crowding fails to fold a globular protein in cells.
    Schlesinger AP; Wang Y; Tadeo X; Millet O; Pielak GJ
    J Am Chem Soc; 2011 Jun; 133(21):8082-5. PubMed ID: 21534566
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Associative Interactions in Crowded Solutions of Biopolymers Counteract Depletion Effects.
    Groen J; Foschepoth D; te Brinke E; Boersma AJ; Imamura H; Rivas G; Heus HA; Huck WT
    J Am Chem Soc; 2015 Oct; 137(40):13041-8. PubMed ID: 26383885
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Beyond the excluded volume effects: mechanistic complexity of the crowded milieu.
    Kuznetsova IM; Zaslavsky BY; Breydo L; Turoverov KK; Uversky VN
    Molecules; 2015 Jan; 20(1):1377-409. PubMed ID: 25594347
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Structural analysis of proteins in living eukaryotic cells using magnetic resonance spectroscopy].
    Tochio H; Shirakawa M
    Yakugaku Zasshi; 2012; 132(2):185-93. PubMed ID: 22293698
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The intracellular environment affects protein-protein interactions.
    Speer SL; Zheng W; Jiang X; Chu IT; Guseman AJ; Liu M; Pielak GJ; Li C
    Proc Natl Acad Sci U S A; 2021 Mar; 118(11):. PubMed ID: 33836588
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Crowding and hydrodynamic interactions likely dominate in vivo macromolecular motion.
    Ando T; Skolnick J
    Proc Natl Acad Sci U S A; 2010 Oct; 107(43):18457-62. PubMed ID: 20937902
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mimicking the in vivo Environment--The Effect of Crowding on RNA and Biomacromolecular Folding and Activity.
    Fiorini E; Börner R; Sigel RK
    Chimia (Aarau); 2015; 69(4):207-12. PubMed ID: 26668940
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitative assessment of the relative contributions of steric repulsion and chemical interactions to macromolecular crowding.
    Minton AP
    Biopolymers; 2013 Apr; 99(4):239-44. PubMed ID: 23348671
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transient Interactions of a Cytosolic Protein with Macromolecular and Vesicular Cosolutes: Unspecific and Specific Effects.
    Ceccon A; Busato M; Pérez Santero S; D'Onofrio M; Musiani F; Giorgetti A; Assfalg M
    Chembiochem; 2015 Dec; 16(18):2633-45. PubMed ID: 26449487
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.