These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
296 related articles for article (PubMed ID: 23968363)
1. Fabrication of luminescent monolayered tungsten dichalcogenides quantum dots with giant spin-valley coupling. Lin L; Xu Y; Zhang S; Ross IM; Ong AC; Allwood DA ACS Nano; 2013 Sep; 7(9):8214-23. PubMed ID: 23968363 [TBL] [Abstract][Full Text] [Related]
2. Ultrasmall and Monolayered Tungsten Dichalcogenide Quantum Dots with Giant Spin-Valley Coupling and Purple Luminescence. Zhang K; Fu L; Zhang W; Pan H; Sun Y; Ge C; Du Y; Tang N ACS Omega; 2018 Sep; 3(9):12188-12194. PubMed ID: 31459293 [TBL] [Abstract][Full Text] [Related]
3. Fabrication and luminescence of monolayered boron nitride quantum dots. Lin L; Xu Y; Zhang S; Ross IM; Ong AC; Allwood DA Small; 2014 Jan; 10(1):60-5. PubMed ID: 23839969 [TBL] [Abstract][Full Text] [Related]
4. Optical signature of symmetry variations and spin-valley coupling in atomically thin tungsten dichalcogenides. Zeng H; Liu GB; Dai J; Yan Y; Zhu B; He R; Xie L; Xu S; Chen X; Yao W; Cui X Sci Rep; 2013; 3():1608. PubMed ID: 23575911 [TBL] [Abstract][Full Text] [Related]
5. A Single-Step Electrochemical Synthesis of Luminescent WS Valappil MO; Anil A; Shaijumon M; Pillai VK; Alwarappan S Chemistry; 2017 Jul; 23(38):9144-9148. PubMed ID: 28463454 [TBL] [Abstract][Full Text] [Related]
6. Understanding the excitation wavelength dependent spectral shift and large exciton binding energy of tungsten disulfide quantum dots and its interaction with single-walled carbon nanotubes. Bora A; Mawlong LPL; Das R; Giri PK J Colloid Interface Sci; 2020 Mar; 561():519-532. PubMed ID: 31740135 [TBL] [Abstract][Full Text] [Related]
7. Highly lattice-mismatched semiconductor-metal hybrid nanostructures: gold nanoparticle encapsulated luminescent silicon quantum dots. Ray M; Basu TS; Bandyopadhyay NR; Klie RF; Ghosh S; Raja SO; Dasgupta AK Nanoscale; 2014 Feb; 6(4):2201-10. PubMed ID: 24382635 [TBL] [Abstract][Full Text] [Related]
9. Dependence of luminescence efficiency of cdse quantum dots on chemical environments. Jose R; Ishikawa M; Thavasi V; Baba Y; Ramakrishna S J Nanosci Nanotechnol; 2008 Nov; 8(11):5615-23. PubMed ID: 19198279 [TBL] [Abstract][Full Text] [Related]
10. A simple route to growth of silicon nanowires. Pan H; Ni Z; Poh C; Feng YP; Lin J; Shen Z J Nanosci Nanotechnol; 2008 Nov; 8(11):5787-90. PubMed ID: 19198306 [TBL] [Abstract][Full Text] [Related]
11. Evaluation of biodistribution and kinetics of tungsten disulphide quantum dots by Inductively coupled plasma mass spectroscopy: A detailed in vivo QD-bio interactions study. Surendranath A Colloids Surf B Biointerfaces; 2023 Mar; 223():113153. PubMed ID: 36716657 [TBL] [Abstract][Full Text] [Related]
12. Highly Luminescent WS Ghorai A; Bayan S; Gogurla N; Midya A; Ray SK ACS Appl Mater Interfaces; 2017 Jan; 9(1):558-565. PubMed ID: 27957847 [TBL] [Abstract][Full Text] [Related]
13. Temperature-modulated quenching of quantum dots covalently coupled to chain ends of poly(N-isopropyl acrylamide) brushes on gold. Tagit O; Tomczak N; Benetti EM; Cesa Y; Blum C; Subramaniam V; Herek JL; Julius Vancso G Nanotechnology; 2009 May; 20(18):185501. PubMed ID: 19420613 [TBL] [Abstract][Full Text] [Related]
14. Biexciton Formation in Bilayer Tungsten Disulfide. He Z; Xu W; Zhou Y; Wang X; Sheng Y; Rong Y; Guo S; Zhang J; Smith JM; Warner JH ACS Nano; 2016 Feb; 10(2):2176-83. PubMed ID: 26761127 [TBL] [Abstract][Full Text] [Related]
15. Functional Si and CdSe quantum dots: synthesis, conjugate formation, and photoluminescence quenching by surface interactions. Sudeep PK; Emrick T ACS Nano; 2009 Dec; 3(12):4105-9. PubMed ID: 19908857 [TBL] [Abstract][Full Text] [Related]
16. Evolution of electronic structure in atomically thin sheets of WS2 and WSe2. Zhao W; Ghorannevis Z; Chu L; Toh M; Kloc C; Tan PH; Eda G ACS Nano; 2013 Jan; 7(1):791-7. PubMed ID: 23256505 [TBL] [Abstract][Full Text] [Related]
17. Observation of quantum-confined exciton states in monolayer WS Zheng SW; Wang L; Wang HY; Xu CY; Luo Y; Sun HB Nanoscale; 2021 Oct; 13(40):17093-17100. PubMed ID: 34623366 [TBL] [Abstract][Full Text] [Related]
18. Facile Bottom-up Preparation of WS Hang DR; Sun DY; Chen CH; Wu HF; Chou MMC; Islam SE; Sharma KH Nanoscale Res Lett; 2019 Aug; 14(1):271. PubMed ID: 31399837 [TBL] [Abstract][Full Text] [Related]
19. Interfacially Bound Exciton State in a Hybrid Structure of Monolayer WS Cheng G; Li B; Zhao C; Yan X; Wang H; Lau KM; Wang J Nano Lett; 2018 Sep; 18(9):5640-5645. PubMed ID: 30139259 [TBL] [Abstract][Full Text] [Related]