These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 23968467)

  • 1. Discriminating lysosomal membrane protein types using dynamic neural network.
    Tripathi V; Gupta DK
    J Biomol Struct Dyn; 2014; 32(10):1575-82. PubMed ID: 23968467
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predicting membrane protein types by fusing composite protein sequence features into pseudo amino acid composition.
    Hayat M; Khan A
    J Theor Biol; 2011 Feb; 271(1):10-7. PubMed ID: 21110985
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prediction of membrane proteins using split amino acid and ensemble classification.
    Hayat M; Khan A; Yeasin M
    Amino Acids; 2012 Jun; 42(6):2447-60. PubMed ID: 21850437
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Artificial neural network model for predicting membrane protein types.
    Cai YD; Liu XJ; Chou KC
    J Biomol Struct Dyn; 2001 Feb; 18(4):607-10. PubMed ID: 11245255
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Signal peptide discrimination and cleavage site identification using SVM and NN.
    Kazemian HB; Yusuf SA; White K
    Comput Biol Med; 2014 Feb; 45():98-110. PubMed ID: 24480169
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The modified Mahalanobis Discriminant for predicting outer membrane proteins by using Chou's pseudo amino acid composition.
    Lin H
    J Theor Biol; 2008 May; 252(2):350-6. PubMed ID: 18355838
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Discrimination of outer membrane proteins using machine learning algorithms.
    Gromiha MM; Suwa M
    Proteins; 2006 Jun; 63(4):1031-7. PubMed ID: 16493651
    [TBL] [Abstract][Full Text] [Related]  

  • 8. LogitBoost classifier for discriminating thermophilic and mesophilic proteins.
    Zhang G; Fang B
    J Biotechnol; 2007 Jan; 127(3):417-24. PubMed ID: 17045354
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prediction of turn types in protein structure by machine-learning classifiers.
    Meissner M; Koch O; Klebe G; Schneider G
    Proteins; 2009 Feb; 74(2):344-52. PubMed ID: 18618702
    [TBL] [Abstract][Full Text] [Related]  

  • 10. TMBETADISC-RBF: Discrimination of beta-barrel membrane proteins using RBF networks and PSSM profiles.
    Ou YY; Gromiha MM; Chen SA; Suwa M
    Comput Biol Chem; 2008 Jun; 32(3):227-31. PubMed ID: 18434251
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transmembrane helices predicted at 95% accuracy.
    Rost B; Casadio R; Fariselli P; Sander C
    Protein Sci; 1995 Mar; 4(3):521-33. PubMed ID: 7795533
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Correlation and prediction of gene expression level from amino acid and dipeptide composition of its protein.
    Raghava GP; Han JH
    BMC Bioinformatics; 2005 Mar; 6():59. PubMed ID: 15773999
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Generalized classifier neural network.
    Ozyildirim BM; Avci M
    Neural Netw; 2013 Mar; 39():18-26. PubMed ID: 23298551
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prediction of integral membrane protein type by collocated hydrophobic amino acid pairs.
    Chen K; Jiang Y; Du L; Kurgan L
    J Comput Chem; 2009 Jan; 30(1):163-72. PubMed ID: 18567007
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of methods for predicting the topology of beta-barrel outer membrane proteins and a consensus prediction method.
    Bagos PG; Liakopoulos TD; Hamodrakas SJ
    BMC Bioinformatics; 2005 Jan; 6():7. PubMed ID: 15647112
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A neural network model for the prediction of membrane-spanning amino acid sequences.
    Lohmann R; Schneider G; Behrens D; Wrede P
    Protein Sci; 1994 Sep; 3(9):1597-601. PubMed ID: 7833818
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel method for predicting protein subcellular localization based on pseudo amino acid composition.
    Ma J; Gu H
    BMB Rep; 2010 Oct; 43(10):670-6. PubMed ID: 21034529
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prediction of C alpha-H...O and C alpha-H...pi interactions in proteins using recurrent neural network.
    Kaur H; Raghava GP
    In Silico Biol; 2006; 6(1-2):111-25. PubMed ID: 16789918
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A neural network method for prediction of beta-turn types in proteins using evolutionary information.
    Kaur H; Raghava GP
    Bioinformatics; 2004 Nov; 20(16):2751-8. PubMed ID: 15145798
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prediction of protein structural classes by Chou's pseudo amino acid composition: approached using continuous wavelet transform and principal component analysis.
    Li ZC; Zhou XB; Dai Z; Zou XY
    Amino Acids; 2009 Jul; 37(2):415-25. PubMed ID: 18726140
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.