These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
335 related articles for article (PubMed ID: 23969558)
1. Theophylline-dependent riboswitch as a novel genetic tool for strict regulation of protein expression in Cyanobacterium Synechococcus elongatus PCC 7942. Nakahira Y; Ogawa A; Asano H; Oyama T; Tozawa Y Plant Cell Physiol; 2013 Oct; 54(10):1724-35. PubMed ID: 23969558 [TBL] [Abstract][Full Text] [Related]
2. Regulation of circadian clock gene expression by phosphorylation states of KaiC in cyanobacteria. Murayama Y; Oyama T; Kondo T J Bacteriol; 2008 Mar; 190(5):1691-8. PubMed ID: 18165308 [TBL] [Abstract][Full Text] [Related]
3. Transcriptional regulation of the circadian clock operon kaiBC by upstream regions in cyanobacteria. Kutsuna S; Nakahira Y; Katayama M; Ishiura M; Kondo T Mol Microbiol; 2005 Sep; 57(5):1474-84. PubMed ID: 16102014 [TBL] [Abstract][Full Text] [Related]
4. Detection of rhythmic bioluminescence from luciferase reporters in cyanobacteria. Mackey SR; Ditty JL; Clerico EM; Golden SS Methods Mol Biol; 2007; 362():115-29. PubMed ID: 17417005 [TBL] [Abstract][Full Text] [Related]
5. Comprehensive characterization of a theophylline riboswitch reveals two pivotal features of Shine-Dalgarno influencing activated translation property. Cui W; Cheng J; Miao S; Zhou L; Liu Z; Guo J; Zhou Z Appl Microbiol Biotechnol; 2017 Mar; 101(5):2107-2120. PubMed ID: 27986992 [TBL] [Abstract][Full Text] [Related]
6. labA: a novel gene required for negative feedback regulation of the cyanobacterial circadian clock protein KaiC. Taniguchi Y; Katayama M; Ito R; Takai N; Kondo T; Oyama T Genes Dev; 2007 Jan; 21(1):60-70. PubMed ID: 17210789 [TBL] [Abstract][Full Text] [Related]
7. A mathematical model for the Kai-protein-based chemical oscillator and clock gene expression rhythms in cyanobacteria. Miyoshi F; Nakayama Y; Kaizu K; Iwasaki H; Tomita M J Biol Rhythms; 2007 Feb; 22(1):69-80. PubMed ID: 17229926 [TBL] [Abstract][Full Text] [Related]
8. Biochemical analysis of three putative KaiC clock proteins from Synechocystis sp. PCC 6803 suggests their functional divergence. Wiegard A; Dörrich AK; Deinzer HT; Beck C; Wilde A; Holtzendorff J; Axmann IM Microbiology (Reading); 2013 May; 159(Pt 5):948-958. PubMed ID: 23449916 [TBL] [Abstract][Full Text] [Related]
9. Circadian rhythms in gene transcription imparted by chromosome compaction in the cyanobacterium Synechococcus elongatus. Smith RM; Williams SB Proc Natl Acad Sci U S A; 2006 May; 103(22):8564-9. PubMed ID: 16707582 [TBL] [Abstract][Full Text] [Related]
10. The circadian oscillator in Synechococcus elongatus controls metabolite partitioning during diurnal growth. Diamond S; Jun D; Rubin BE; Golden SS Proc Natl Acad Sci U S A; 2015 Apr; 112(15):E1916-25. PubMed ID: 25825710 [TBL] [Abstract][Full Text] [Related]
11. Regulation of gene expression in diverse cyanobacterial species by using theophylline-responsive riboswitches. Ma AT; Schmidt CM; Golden JW Appl Environ Microbiol; 2014 Nov; 80(21):6704-13. PubMed ID: 25149516 [TBL] [Abstract][Full Text] [Related]
12. CmpR is important for circadian phasing and cell growth. Tanaka H; Kitamura M; Nakano Y; Katayama M; Takahashi Y; Kondo T; Manabe K; Omata T; Kutsuna S Plant Cell Physiol; 2012 Sep; 53(9):1561-9. PubMed ID: 22744912 [TBL] [Abstract][Full Text] [Related]
13. Expression of the circadian clock-related gene pex in cyanobacteria increases in darkness and is required to delay the clock. Takai N; Ikeuchi S; Manabe K; Kutsuna S J Biol Rhythms; 2006 Aug; 21(4):235-44. PubMed ID: 16864644 [TBL] [Abstract][Full Text] [Related]
14. Independence of circadian timing from cell division in cyanobacteria. Mori T; Johnson CH J Bacteriol; 2001 Apr; 183(8):2439-44. PubMed ID: 11274102 [TBL] [Abstract][Full Text] [Related]
15. Overexpression of lalA, a paralog of labA, is capable of affecting both circadian gene expression and cell growth in the cyanobacterium Synechococcus elongatus PCC 7942. Taniguchi Y; Nishikawa T; Kondo T; Oyama T FEBS Lett; 2012 Mar; 586(6):753-9. PubMed ID: 22289183 [TBL] [Abstract][Full Text] [Related]
16. Complementation of Cobalamin Auxotrophy in Synechococcus sp. Strain PCC 7002 and Validation of a Putative Cobalamin Riboswitch In Vivo. Pérez AA; Liu Z; Rodionov DA; Li Z; Bryant DA J Bacteriol; 2016 Oct; 198(19):2743-52. PubMed ID: 27457714 [TBL] [Abstract][Full Text] [Related]
17. A cyanobacterial circadian clock based on the Kai oscillator. Kondo T Cold Spring Harb Symp Quant Biol; 2007; 72():47-55. PubMed ID: 18419262 [TBL] [Abstract][Full Text] [Related]
18. A circadian timing mechanism in the cyanobacteria. Williams SB Adv Microb Physiol; 2007; 52():229-96. PubMed ID: 17027373 [TBL] [Abstract][Full Text] [Related]
19. A kaiC-interacting sensory histidine kinase, SasA, necessary to sustain robust circadian oscillation in cyanobacteria. Iwasaki H; Williams SB; Kitayama Y; Ishiura M; Golden SS; Kondo T Cell; 2000 Apr; 101(2):223-33. PubMed ID: 10786837 [TBL] [Abstract][Full Text] [Related]
20. A tightly inducible riboswitch system in Synechocystis sp. PCC 6803. Ohbayashi R; Akai H; Yoshikawa H; Hess WR; Watanabe S J Gen Appl Microbiol; 2016 Jul; 62(3):154-9. PubMed ID: 27250662 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]