These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 23970014)

  • 1. A Bayesian network meta-analysis for binary outcome: how to do it.
    Greco T; Landoni G; Biondi-Zoccai G; D'Ascenzo F; Zangrillo A
    Stat Methods Med Res; 2016 Oct; 25(5):1757-1773. PubMed ID: 23970014
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A design-by-treatment interaction model for network meta-analysis and meta-regression with integrated nested Laplace approximations.
    Günhan BK; Friede T; Held L
    Res Synth Methods; 2018 Jun; 9(2):179-194. PubMed ID: 29193801
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Network meta-analysis: development of a three-level hierarchical modeling approach incorporating dose-related constraints.
    Owen RK; Tincello DG; Keith RA
    Value Health; 2015 Jan; 18(1):116-26. PubMed ID: 25595242
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Network meta-analysis with integrated nested Laplace approximations.
    Sauter R; Held L
    Biom J; 2015 Nov; 57(6):1038-50. PubMed ID: 26360927
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multivariate network meta-analysis incorporating class effects.
    Owen RK; Bujkiewicz S; Tincello DG; Abrams KR
    BMC Med Res Methodol; 2020 Jul; 20(1):184. PubMed ID: 32641105
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bayesian network meta-regression hierarchical models using heavy-tailed multivariate random effects with covariate-dependent variances.
    Li H; Lim D; Chen MH; Ibrahim JG; Kim S; Shah AK; Lin J
    Stat Med; 2021 Jul; 40(15):3582-3603. PubMed ID: 33846992
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Diagnostics for generalized linear hierarchical models in network meta-analysis.
    Zhao H; Hodges JS; Carlin BP
    Res Synth Methods; 2017 Sep; 8(3):333-342. PubMed ID: 28683516
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reducing Monte Carlo error in the Bayesian estimation of risk ratios using log-binomial regression models.
    Salmerón D; Cano JA; Chirlaque MD
    Stat Med; 2015 Aug; 34(19):2755-67. PubMed ID: 25944082
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An empirical comparison of Bayesian modelling strategies for missing binary outcome data in network meta-analysis.
    Spineli LM
    BMC Med Res Methodol; 2019 Apr; 19(1):86. PubMed ID: 31018836
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bayesian hierarchical models for multi-level repeated ordinal data using WinBUGS.
    Qiu Z; Song PX; Tan M
    J Biopharm Stat; 2002 May; 12(2):121-35. PubMed ID: 12413235
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A network meta-analysis comparing perioperative outcomes of interventions aiming to decrease ischemia reperfusion injury during elective liver resection.
    Simillis C; Robertson FP; Afxentiou T; Davidson BR; Gurusamy KS
    Surgery; 2016 Apr; 159(4):1157-69. PubMed ID: 26606882
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Bayesian approach to discrete multiple outcome network meta-analysis.
    Graziani R; Venturini S
    PLoS One; 2020; 15(4):e0231876. PubMed ID: 32343711
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A tutorial on Bayesian bivariate meta-analysis of mixed binary-continuous outcomes with missing treatment effects.
    Gajic-Veljanoski O; Cheung AM; Bayoumi AM; Tomlinson G
    Stat Med; 2016 May; 35(12):2092-108. PubMed ID: 26553369
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluating the impact of imputations for missing participant outcome data in a network meta-analysis.
    Spineli LM; Higgins JP; Cipriani A; Leucht S; Salanti G
    Clin Trials; 2013; 10(3):378-88. PubMed ID: 23321265
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Two new methods to fit models for network meta-analysis with random inconsistency effects.
    Law M; Jackson D; Turner R; Rhodes K; Viechtbauer W
    BMC Med Res Methodol; 2016 Jul; 16():87. PubMed ID: 27465416
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bayesian one-step IPD network meta-analysis of time-to-event data using Royston-Parmar models.
    Freeman SC; Carpenter JR
    Res Synth Methods; 2017 Dec; 8(4):451-464. PubMed ID: 28742955
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A menu-driven software package of Bayesian nonparametric (and parametric) mixed models for regression analysis and density estimation.
    Karabatsos G
    Behav Res Methods; 2017 Feb; 49(1):335-362. PubMed ID: 26956682
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Theory and practice of Bayesian and frequentist frameworks for network meta-analysis.
    Sadeghirad B; Foroutan F; Zoratti MJ; Busse JW; Brignardello-Petersen R; Guyatt G; Thabane L
    BMJ Evid Based Med; 2023 Jun; 28(3):204-209. PubMed ID: 35760451
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hierarchical Bayesian approaches for detecting inconsistency in network meta-analysis.
    Zhao H; Hodges JS; Ma H; Jiang Q; Carlin BP
    Stat Med; 2016 Sep; 35(20):3524-36. PubMed ID: 27037506
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Risk analysis of new oral anticoagulants for gastrointestinal bleeding and intracranial hemorrhage in atrial fibrillation patients: a systematic review and network meta-analysis.
    Xu WW; Hu SJ; Wu T
    J Zhejiang Univ Sci B; 2017 Jul; 18(7):567-576. PubMed ID: 28681581
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.