These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
653 related articles for article (PubMed ID: 23970408)
1. Extremely low-frequency electromagnetic fields induce neural differentiation in bone marrow derived mesenchymal stem cells. Kim HJ; Jung J; Park JH; Kim JH; Ko KN; Kim CW Exp Biol Med (Maywood); 2013 Aug; 238(8):923-31. PubMed ID: 23970408 [TBL] [Abstract][Full Text] [Related]
2. Egr1 mediated the neuronal differentiation induced by extremely low-frequency electromagnetic fields. Seong Y; Moon J; Kim J Life Sci; 2014 Apr; 102(1):16-27. PubMed ID: 24603130 [TBL] [Abstract][Full Text] [Related]
3. Electromagnetic fields induce neural differentiation of human bone marrow derived mesenchymal stem cells via ROS mediated EGFR activation. Park JE; Seo YK; Yoon HH; Kim CW; Park JK; Jeon S Neurochem Int; 2013 Mar; 62(4):418-24. PubMed ID: 23411410 [TBL] [Abstract][Full Text] [Related]
4. Ferritin is associated with neural differentiation of bone marrow-derived mesenchymal stem cells under extremely low-frequency electromagnetic field. Lee HN; Ko KN; Kim HJ; Rosebud Aikins A; Kim CW Cell Mol Biol (Noisy-le-grand); 2015 Nov; 61(7):55-9. PubMed ID: 26602884 [TBL] [Abstract][Full Text] [Related]
6. Effect of extremely low frequency electromagnetic field on MAP2 and Nestin gene expression of hair follicle dermal papilla cells. Moraveji M; Haghighipour N; Keshvari H; Nourizadeh Abbariki T; Shokrgozar MA; Amanzadeh A Int J Artif Organs; 2016 Aug; 39(6):294-9. PubMed ID: 27515859 [TBL] [Abstract][Full Text] [Related]
7. Fifty-Hertz electromagnetic fields facilitate the induction of rat bone mesenchymal stromal cells to differentiate into functional neurons. Bai WF; Xu WC; Feng Y; Huang H; Li XP; Deng CY; Zhang MS Cytotherapy; 2013 Aug; 15(8):961-70. PubMed ID: 23602580 [TBL] [Abstract][Full Text] [Related]
8. Extremely Low-Frequency Electromagnetic Fields Promote In Vitro Neuronal Differentiation and Neurite Outgrowth of Embryonic Neural Stem Cells via Up-Regulating TRPC1. Ma Q; Chen C; Deng P; Zhu G; Lin M; Zhang L; Xu S; He M; Lu Y; Duan W; Pi H; Cao Z; Pei L; Li M; Liu C; Zhang Y; Zhong M; Zhou Z; Yu Z PLoS One; 2016; 11(3):e0150923. PubMed ID: 26950212 [TBL] [Abstract][Full Text] [Related]
9. Extremely low frequency electromagnetic fields modulate expression of inducible nitric oxide synthase, endothelial nitric oxide synthase and cyclooxygenase-2 in the human keratinocyte cell line HaCat: potential therapeutic effects in wound healing. Patruno A; Amerio P; Pesce M; Vianale G; Di Luzio S; Tulli A; Franceschelli S; Grilli A; Muraro R; Reale M Br J Dermatol; 2010 Feb; 162(2):258-66. PubMed ID: 19799606 [TBL] [Abstract][Full Text] [Related]
10. Effect of 1 mT sinusoidal electromagnetic fields on proliferation and osteogenic differentiation of rat bone marrow mesenchymal stromal cells. Liu C; Yu J; Yang Y; Tang X; Zhao D; Zhao W; Wu H Bioelectromagnetics; 2013 Sep; 34(6):453-64. PubMed ID: 23589052 [TBL] [Abstract][Full Text] [Related]
11. Zinc Sulphate Mediates the Stimulation of Cell Proliferation of Rat Adipose Tissue-Derived Mesenchymal Stem Cells Under High Intensity of EMF Exposure. Fathi E; Farahzadi R Biol Trace Elem Res; 2018 Aug; 184(2):529-535. PubMed ID: 29189996 [TBL] [Abstract][Full Text] [Related]
12. Electromagnetic fields and nanomagnetic particles increase the osteogenic differentiation of human bone marrow-derived mesenchymal stem cells. Kim MO; Jung H; Kim SC; Park JK; Seo YK Int J Mol Med; 2015 Jan; 35(1):153-60. PubMed ID: 25352086 [TBL] [Abstract][Full Text] [Related]
13. Extremely low frequency electromagnetic fields as effectors of cellular responses in vitro: possible immune cell activation. Simkó M; Mattsson MO J Cell Biochem; 2004 Sep; 93(1):83-92. PubMed ID: 15352165 [TBL] [Abstract][Full Text] [Related]
14. Extremely low-frequency electromagnetic fields enhance the proliferation and differentiation of neural progenitor cells cultured from ischemic brains. Cheng Y; Dai Y; Zhu X; Xu H; Cai P; Xia R; Mao L; Zhao BQ; Fan W Neuroreport; 2015 Oct; 26(15):896-902. PubMed ID: 26339991 [TBL] [Abstract][Full Text] [Related]
15. Assessment of the neurotoxic potential of exposure to 50Hz extremely low frequency electromagnetic fields (ELF-EMF) in naïve and chemically stressed PC12 cells. de Groot MW; Kock MD; Westerink RH Neurotoxicology; 2014 Sep; 44():358-64. PubMed ID: 25111744 [TBL] [Abstract][Full Text] [Related]
16. Stimulation of neural differentiation in human bone marrow mesenchymal stem cells by extremely low-frequency electromagnetic fields incorporated with MNPs. Choi YK; Lee DH; Seo YK; Jung H; Park JK; Cho H Appl Biochem Biotechnol; 2014 Oct; 174(4):1233-1245. PubMed ID: 25099373 [TBL] [Abstract][Full Text] [Related]
17. Effects of extremely low frequency magnetic fields on NGF induced neuronal differentiation of PC12 cells. Jung IS; Kim HJ; Noh R; Kim SC; Kim CW Bioelectromagnetics; 2014 Oct; 35(7):459-69. PubMed ID: 25159695 [TBL] [Abstract][Full Text] [Related]
18. In Vitro Developmental Neurotoxicity Following Chronic Exposure to 50 Hz Extremely Low-Frequency Electromagnetic Fields in Primary Rat Cortical Cultures. de Groot MW; van Kleef RG; de Groot A; Westerink RH Toxicol Sci; 2016 Feb; 149(2):433-40. PubMed ID: 26572663 [TBL] [Abstract][Full Text] [Related]
19. Exposure to extremely low-frequency electromagnetic fields inhibits T-type calcium channels via AA/LTE4 signaling pathway. Cui Y; Liu X; Yang T; Mei YA; Hu C Cell Calcium; 2014 Jan; 55(1):48-58. PubMed ID: 24360572 [TBL] [Abstract][Full Text] [Related]
20. Extremely low-frequency electromagnetic fields affect transcript levels of neuronal differentiation-related genes in embryonic neural stem cells. Ma Q; Deng P; Zhu G; Liu C; Zhang L; Zhou Z; Luo X; Li M; Zhong M; Yu Z; Chen C; Zhang Y PLoS One; 2014; 9(3):e90041. PubMed ID: 24595264 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]