These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 23970499)

  • 1. Modeling 21Ne NMR parameters for carbon nanosystems.
    Kupka T; Nieradka M; Kaminský J; Stobiński L
    Magn Reson Chem; 2013 Oct; 51(10):676-81. PubMed ID: 23970499
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 3He NMR: from free gas to its encapsulation in fullerene.
    Kupka T; Stachów M; Stobiński L; Kaminský J
    Magn Reson Chem; 2013 Aug; 51(8):463-8. PubMed ID: 23737362
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spin component-scaled second-order Møller-Plesset perturbation theory for calculating NMR shieldings.
    Maurer M; Ochsenfeld C
    J Chem Theory Comput; 2015 Jan; 11(1):37-44. PubMed ID: 26574201
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Accurate calculation and modeling of the adiabatic connection in density functional theory.
    Teale AM; Coriani S; Helgaker T
    J Chem Phys; 2010 Apr; 132(16):164115. PubMed ID: 20441266
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 3He NMR studies on helium-pyrrole, helium-indole, and helium-carbazole systems: a new tool for following chemistry of heterocyclic compounds.
    Radula-Janik K; Kupka T
    Magn Reson Chem; 2015 Feb; 53(2):103-9. PubMed ID: 25228253
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Basis set and electron correlation effects on the polarizability and second hyperpolarizability of model open-shell pi-conjugated systems.
    Champagne B; Botek E; Nakano M; Nitta T; Yamaguchi K
    J Chem Phys; 2005 Mar; 122(11):114315. PubMed ID: 15839724
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Estimation of isotropic nuclear magnetic shieldings in the CCSD(T) and MP2 complete basis set limit using affordable correlation calculations.
    Kupka T; Stachów M; Kaminsky J; Sauer SP
    Magn Reson Chem; 2013 Aug; 51(8):482-9. PubMed ID: 23749459
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Theoretical prediction of nuclear magnetic shieldings and indirect spin-spin coupling constants in 1,1-, cis-, and trans-1,2-difluoroethylenes.
    Nozirov F; Kupka T; Stachów M
    J Chem Phys; 2014 Apr; 140(14):144303. PubMed ID: 24735295
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intermolecular potentials of the silane dimer calculated with Hartree-Fock theory, Møller-Plesset perturbation theory, and density functional theory.
    Pai CC; Li AH; Chao SD
    J Phys Chem A; 2007 Nov; 111(46):11922-9. PubMed ID: 17963367
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spin-orbit ZORA and four-component Dirac-Coulomb estimation of relativistic corrections to isotropic nuclear shieldings and chemical shifts of noble gas dimers.
    Jankowska M; Kupka T; Stobiński L; Faber R; Lacerda EG; Sauer SP
    J Comput Chem; 2016 Feb; 37(4):395-403. PubMed ID: 26503739
    [TBL] [Abstract][Full Text] [Related]  

  • 11. From CCSD(T)/aug-cc-pVTZ-J to CCSD(T) complete basis set limit isotropic nuclear magnetic shieldings via affordable DFT/CBS calculations.
    Kupka T; Stachów M; Nieradka M; Kaminsky J; Pluta T; Sauer SP
    Magn Reson Chem; 2011 May; 49(5):231-6. PubMed ID: 21387405
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Accurate prediction of nuclear magnetic resonance shielding constants: towards the accuracy of CCSD(T) complete basis set limit.
    Sun M; Zhang IY; Wu A; Xu X
    J Chem Phys; 2013 Mar; 138(12):124113. PubMed ID: 23556715
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitative prediction of gas-phase (15)N and (31)P nuclear magnetic shielding constants.
    Prochnow E; Auer AA
    J Chem Phys; 2010 Feb; 132(6):064109. PubMed ID: 20151735
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On the Accuracy of Density Functional Theory to Predict Shifts in Nuclear Magnetic Resonance Shielding Constants due to Hydrogen Bonding.
    Kongsted J; Aidas K; Mikkelsen KV; Sauer SP
    J Chem Theory Comput; 2008 Feb; 4(2):267-77. PubMed ID: 26620658
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Why benchmark-quality computations are needed to reproduce 1-adamantyl cation NMR chemical shifts accurately.
    Harding ME; Gauss J; Schleyer Pv
    J Phys Chem A; 2011 Mar; 115(11):2340-4. PubMed ID: 21361308
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improved supermolecular second order Møller-Plesset intermolecular interaction energies using time-dependent density functional response theory.
    Hesselmann A
    J Chem Phys; 2008 Apr; 128(14):144112. PubMed ID: 18412428
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intermolecular potential energy surface for CS2 dimer.
    Farrokhpour H; Mombeini Z; Namazian M; Coote ML
    J Comput Chem; 2011 Apr; 32(5):797-809. PubMed ID: 20941736
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The coupled cluster approach with a hybrid treatment of connected triple excitations based on the restricted Hartree-Fock reference.
    Shen J; Kou Z; Xu E; Li S
    J Chem Phys; 2011 Jan; 134(4):044134. PubMed ID: 21280714
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Performance of spin-component-scaled Møller-Plesset theory (SCS-MP2) for potential energy curves of noncovalent interactions.
    Takatani T; David Sherrill C
    Phys Chem Chem Phys; 2007 Dec; 9(46):6106-14. PubMed ID: 18167585
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Benchmarking Hydrogen and Carbon NMR Chemical Shifts at HF, DFT, and MP2 Levels.
    Flaig D; Maurer M; Hanni M; Braunger K; Kick L; Thubauville M; Ochsenfeld C
    J Chem Theory Comput; 2014 Feb; 10(2):572-8. PubMed ID: 26580033
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.