BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 23970551)

  • 1. Cooperative activation of the T-type CaV3.2 channel: interaction between Domains II and III.
    Demers-Giroux PO; Bourdin B; Sauvé R; Parent L
    J Biol Chem; 2013 Oct; 288(41):29281-93. PubMed ID: 23970551
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neutralisation of a single voltage sensor affects gating determinants in all four pore-forming S6 segments of Ca(V)1.2: a cooperative gating model.
    Beyl S; Depil K; Hohaus A; Stary-Weinzinger A; Linder T; Timin E; Hering S
    Pflugers Arch; 2012 Oct; 464(4):391-401. PubMed ID: 22941337
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular regions underlying the activation of low- and high-voltage activating calcium channels.
    Li J; Stevens L; Wray D
    Eur Biophys J; 2005 Nov; 34(8):1017-29. PubMed ID: 15924245
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The S4-S5 linker couples voltage sensing and activation of pacemaker channels.
    Chen J; Mitcheson JS; Tristani-Firouzi M; Lin M; Sanguinetti MC
    Proc Natl Acad Sci U S A; 2001 Sep; 98(20):11277-82. PubMed ID: 11553787
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Contribution of S4 segments and S4-S5 linkers to the low-voltage activation properties of T-type CaV3.3 channels.
    Sanchez-Sandoval AL; Herrera Carrillo Z; Díaz Velásquez CE; Delgadillo DM; Rivera HM; Gomora JC
    PLoS One; 2018; 13(2):e0193490. PubMed ID: 29474447
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Voltage-dependent gating of hyperpolarization-activated, cyclic nucleotide-gated pacemaker channels: molecular coupling between the S4-S5 and C-linkers.
    Decher N; Chen J; Sanguinetti MC
    J Biol Chem; 2004 Apr; 279(14):13859-65. PubMed ID: 14726518
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional architecture of the inner pore of a voltage-gated Ca2+ channel.
    Zhen XG; Xie C; Fitzmaurice A; Schoonover CE; Orenstein ET; Yang J
    J Gen Physiol; 2005 Sep; 126(3):193-204. PubMed ID: 16129770
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Roles of molecular regions in determining differences between voltage dependence of activation of CaV3.1 and CaV1.2 calcium channels.
    Li J; Stevens L; Klugbauer N; Wray D
    J Biol Chem; 2004 Jun; 279(26):26858-67. PubMed ID: 15100229
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural basis of ion permeation gating in Slo2.1 K+ channels.
    Garg P; Gardner A; Garg V; Sanguinetti MC
    J Gen Physiol; 2013 Nov; 142(5):523-42. PubMed ID: 24166878
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of the gating brake in the I-II loop of CaV3 T-type calcium channels.
    Perez-Reyes E
    Channels (Austin); 2010; 4(6):453-8. PubMed ID: 21099341
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of the outermost basic residues in the S4 segments of the Ca(V)3.1 T-type calcium channel on channel gating.
    Kurejová M; Lacinová L; Pavlovicová M; Eschbach M; Klugbauer N
    Pflugers Arch; 2007 Dec; 455(3):527-39. PubMed ID: 17638012
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kv7.1 ion channels require a lipid to couple voltage sensing to pore opening.
    Zaydman MA; Silva JR; Delaloye K; Li Y; Liang H; Larsson HP; Shi J; Cui J
    Proc Natl Acad Sci U S A; 2013 Aug; 110(32):13180-5. PubMed ID: 23861489
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The isolated voltage sensing domain of the Shaker potassium channel forms a voltage-gated cation channel.
    Zhao J; Blunck R
    Elife; 2016 Oct; 5():. PubMed ID: 27710769
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Distinct contributions of different structural regions to the current kinetics of the Cav3.3 T-type Ca2+ channel.
    Kang HW; Park JY; Lee JH
    Biochim Biophys Acta; 2008 Dec; 1778(12):2740-8. PubMed ID: 18760992
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mutations of the S4-S5 linker alter activation properties of HERG potassium channels expressed in Xenopus oocytes.
    Sanguinetti MC; Xu QP
    J Physiol; 1999 Feb; 514 ( Pt 3)(Pt 3):667-75. PubMed ID: 9882738
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inactivation gating of Kv4 potassium channels: molecular interactions involving the inner vestibule of the pore.
    Jerng HH; Shahidullah M; Covarrubias M
    J Gen Physiol; 1999 May; 113(5):641-60. PubMed ID: 10228180
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamic coupling of voltage sensor and gate involved in closed-state inactivation of kv4.2 channels.
    Barghaan J; Bähring R
    J Gen Physiol; 2009 Feb; 133(2):205-24. PubMed ID: 19171772
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Determinants of voltage-dependent gating and open-state stability in the S5 segment of Shaker potassium channels.
    Kanevsky M; Aldrich RW
    J Gen Physiol; 1999 Aug; 114(2):215-42. PubMed ID: 10435999
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural basis of slow activation gating in the cardiac I Ks channel complex.
    Strutz-Seebohm N; Pusch M; Wolf S; Stoll R; Tapken D; Gerwert K; Attali B; Seebohm G
    Cell Physiol Biochem; 2011; 27(5):443-52. PubMed ID: 21691061
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inhibition of sodium channel gating by trapping the domain II voltage sensor with protoxin II.
    Sokolov S; Kraus RL; Scheuer T; Catterall WA
    Mol Pharmacol; 2008 Mar; 73(3):1020-8. PubMed ID: 18156314
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.