These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 23970560)

  • 1. The molecular trigger for high-speed wing beats in a bee.
    Iwamoto H; Yagi N
    Science; 2013 Sep; 341(6151):1243-6. PubMed ID: 23970560
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Morphological and physiological idiosyncrasies lead to interindividual variation in flight metabolic rate in worker bumblebees (Bombus impatiens).
    Skandalis DA; Darveau CA
    Physiol Biochem Zool; 2012; 85(6):657-70. PubMed ID: 23099463
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The scaling of myofibrillar actomyosin ATPase activity in apid bee flight muscle in relation to hovering flight energetics.
    Askew GN; Tregear RT; Ellington CP
    J Exp Biol; 2010 Apr; 213(Pt 7):1195-206. PubMed ID: 20228356
    [TBL] [Abstract][Full Text] [Related]  

  • 4. What causes wing wear in foraging bumble bees?
    Foster DJ; Cartar RV
    J Exp Biol; 2011 Jun; 214(Pt 11):1896-901. PubMed ID: 21562177
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular dynamics of cyclically contracting insect flight muscle in vivo.
    Dickinson M; Farman G; Frye M; Bekyarova T; Gore D; Maughan D; Irving T
    Nature; 2005 Jan; 433(7023):330-4. PubMed ID: 15662427
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effects of artificial wing wear on the flight capacity of the honey bee Apis mellifera.
    Vance JT; Roberts SP
    J Insect Physiol; 2014 Jun; 65():27-36. PubMed ID: 24768843
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The myosin filament superlattice in the flight muscles of flies: A-band lattice optimisation for stretch-activation?
    Squire JM; Bekyarova T; Farman G; Gore D; Rajkumar G; Knupp C; Lucaveche C; Reedy MC; Reedy MK; Irving TC
    J Mol Biol; 2006 Sep; 361(5):823-38. PubMed ID: 16887144
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fourier analysis of wing beat signals: assessing the effects of genetic alterations of flight muscle structure in Diptera.
    Hyatt CJ; Maughan DW
    Biophys J; 1994 Sep; 67(3):1149-54. PubMed ID: 7811927
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinematic strategies for mitigating gust perturbations in insects.
    Vance JT; Faruque I; Humbert JS
    Bioinspir Biomim; 2013 Mar; 8(1):016004. PubMed ID: 23302326
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Forces acting between muscle filaments. III. A mathematical computation of the resting elasticity of bee wing muscle.
    Garamvölgyi N; Biczó G; Eöry A; Suhai S
    Acta Biochim Biophys Acad Sci Hung; 1974; 9(3):233-8. PubMed ID: 4420312
    [No Abstract]   [Full Text] [Related]  

  • 11. Turning manoeuvres in free-flying locusts: two-channel radio-telemetric transmission of muscle activity.
    Kutsch W; Berger S; Kautz H
    J Exp Zool A Comp Exp Biol; 2003 Oct; 299(2):139-50. PubMed ID: 12975802
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Wing beat kinematics of a nectar-feeding bat, Glossophaga soricina, flying at different flight speeds and Strouhal numbers.
    Lindhe Norberg UM; Winter Y
    J Exp Biol; 2006 Oct; 209(Pt 19):3887-97. PubMed ID: 16985205
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of the essential oil constituent thymol and other neuroactive chemicals on flight motor activity and wing beat frequency in the blowfly Phaenicia sericata.
    Waliwitiya R; Belton P; Nicholson RA; Lowenberger CA
    Pest Manag Sci; 2010 Mar; 66(3):277-89. PubMed ID: 19890946
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Myosin light chain-2 mutation affects flight, wing beat frequency, and indirect flight muscle contraction kinetics in Drosophila.
    Warmke J; Yamakawa M; Molloy J; Falkenthal S; Maughan D
    J Cell Biol; 1992 Dec; 119(6):1523-39. PubMed ID: 1469046
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The fluid dynamics of flight control by kinematic phase lag variation between two robotic insect wings.
    Maybury WJ; Lehmann FO
    J Exp Biol; 2004 Dec; 207(Pt 26):4707-26. PubMed ID: 15579564
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of flight speed upon muscle activity in hummingbirds.
    Tobalske BW; Biewener AA; Warrick DR; Hedrick TL; Powers DR
    J Exp Biol; 2010 Jul; 213(Pt 14):2515-23. PubMed ID: 20581281
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wing wear reduces bumblebee flight performance in a dynamic obstacle course.
    Mountcastle AM; Alexander TM; Switzer CM; Combes SA
    Biol Lett; 2016 Jun; 12(6):. PubMed ID: 27303054
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The aerodynamic benefit of wing-wing interaction depends on stroke trajectory in flapping insect wings.
    Lehmann FO; Pick S
    J Exp Biol; 2007 Apr; 210(Pt 8):1362-77. PubMed ID: 17401119
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Allometric scaling of flight energetics in Panamanian orchid bees: a comparative phylogenetic approach.
    Darveau CA; Hochachka PW; Welch KC; Roubik DW; Suarez RK
    J Exp Biol; 2005 Sep; 208(Pt 18):3581-91. PubMed ID: 16155229
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Forward flight of swallowtail butterfly with simple flapping motion.
    Tanaka H; Shimoyama I
    Bioinspir Biomim; 2010 Jun; 5(2):026003. PubMed ID: 20484782
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.