These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 23970827)

  • 1. Characteristics and scenarios projection of climate change on the Tibetan Plateau.
    Hao Z; Ju Q; Jiang W; Zhu C
    ScientificWorldJournal; 2013; 2013():129793. PubMed ID: 23970827
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interannual variations in spring phenology and their response to climate change across the Tibetan Plateau from 1982 to 2013.
    Liu L; Zhang X; Donnelly A; Liu X
    Int J Biometeorol; 2016 Oct; 60(10):1563-1575. PubMed ID: 26936843
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Climate change and its impacts on vegetation distribution and net primary productivity of the alpine ecosystem in the Qinghai-Tibetan Plateau.
    Gao Q; Guo Y; Xu H; Ganjurjav H; Li Y; Wan Y; Qin X; Ma X; Liu S
    Sci Total Environ; 2016 Jun; 554-555():34-41. PubMed ID: 26950617
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Responses of normalized difference vegetation index (NDVI) to precipitation changes on the grassland of Tibetan Plateau from 2000 to 2015.].
    Wang ZP; Zhang XZ; He YT; Li M; Shi PL; Zu JX; Niu B
    Ying Yong Sheng Tai Xue Bao; 2018 Jan; 29(1):75-83. PubMed ID: 29692015
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vegetation net primary productivity and its response to climate change during 2001-2008 in the Tibetan Plateau.
    Gao Y; Zhou X; Wang Q; Wang C; Zhan Z; Chen L; Yan J; Qu R
    Sci Total Environ; 2013 Feb; 444():356-62. PubMed ID: 23280293
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Insight into runoff characteristics using hydrological modeling in the data-scarce southern Tibetan Plateau: Past, present, and future.
    Cai M; Yang S; Zhao C; Zhou Q; Hou L
    PLoS One; 2017; 12(5):e0176813. PubMed ID: 28486483
    [TBL] [Abstract][Full Text] [Related]  

  • 7. When could global warming reach 4°C?
    Betts RA; Collins M; Hemming DL; Jones CD; Lowe JA; Sanderson MG
    Philos Trans A Math Phys Eng Sci; 2011 Jan; 369(1934):67-84. PubMed ID: 21115513
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On the applicability of temperature and precipitation data from CMIP3 for China.
    Miao C; Duan Q; Yang L; Borthwick AG
    PLoS One; 2012; 7(9):e44659. PubMed ID: 23028575
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Varying responses of vegetation activity to climate changes on the Tibetan Plateau grassland.
    Cong N; Shen M; Yang W; Yang Z; Zhang G; Piao S
    Int J Biometeorol; 2017 Aug; 61(8):1433-1444. PubMed ID: 28247125
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A mechanistic-bioclimatic modeling analysis of the potential impact of climate change on biomes of the Tibetan Plateau.
    Ye JS; Reynolds JF; Li FM
    Ecology; 2014 Aug; 95(8):2109-20. PubMed ID: 25230463
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Greater phenological sensitivity on the higher Tibetan Plateau: new insights from weekly 5 km EVI2 datasets.
    Qiu B; Zhong J; Tang Z; Feng M; Chen C; Wang X
    Int J Biometeorol; 2017 May; 61(5):807-820. PubMed ID: 27783150
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Warming and Wetting will continue over the Tibetan Plateau in the Shared Socioeconomic Pathways.
    Deng H; Ji Z
    PLoS One; 2023; 18(8):e0289589. PubMed ID: 37540690
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Projections for the changes in growing season length of tree-ring formation on the Tibetan Plateau based on CMIP5 model simulations.
    He M; Yang B; Shishov V; Rossi S; Bräuning A; Ljungqvist FC; Grießinger J
    Int J Biometeorol; 2018 Apr; 62(4):631-641. PubMed ID: 29150764
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The response of vegetation dynamics of the different alpine grassland types to temperature and precipitation on the Tibetan Plateau.
    Sun J; Qin X; Yang J
    Environ Monit Assess; 2016 Jan; 188(1):20. PubMed ID: 26661956
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Precipitation impacts on vegetation spring phenology on the Tibetan Plateau.
    Shen M; Piao S; Cong N; Zhang G; Jassens IA
    Glob Chang Biol; 2015 Oct; 21(10):3647-56. PubMed ID: 25926356
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Changes of China agricultural climate resources under the background of climate change. VII. Change characteristics of agricultural climate resources in arid and semi-arid region of Tibet Plateau].
    Xu HJ; Yang XG; Wang WF; Xu C
    Ying Yong Sheng Tai Xue Bao; 2011 Jul; 22(7):1817-24. PubMed ID: 22007460
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Projections of temperature and precipitation changes in Xinjiang from 2021 to 2050 based on the CMIP6 model.
    Zhang Y; Zhang P; Gu X; Long A
    PLoS One; 2024; 19(10):e0307911. PubMed ID: 39383153
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interannual climate variability and altered precipitation influence the soil microbial community structure in a Tibetan Plateau grassland.
    Shi Y; Zhang K; Li Q; Liu X; He JS; Chu H
    Sci Total Environ; 2020 Apr; 714():136794. PubMed ID: 31991278
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Temperature leads to annual changes of plant community composition in alpine grasslands on the Qinghai-Tibetan Plateau.
    Ganjurjav H; Gornish ES; Hu G; Wan Y; Li Y; Danjiu L; Gao Q
    Environ Monit Assess; 2018 Sep; 190(10):585. PubMed ID: 30209621
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Simulation of Stipa purpurea distribution pattern on Tibetan Plateau based on MaxEnt model and GIS].
    Hu ZJ; Zhang YL; Yu HB
    Ying Yong Sheng Tai Xue Bao; 2015 Feb; 26(2):505-11. PubMed ID: 26094467
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.