These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
135 related articles for article (PubMed ID: 23971615)
41. Nanopropellers and their actuation in complex viscoelastic media. Schamel D; Mark AG; Gibbs JG; Miksch C; Morozov KI; Leshansky AM; Fischer P ACS Nano; 2014 Sep; 8(9):8794-801. PubMed ID: 24911046 [TBL] [Abstract][Full Text] [Related]
42. Swimming speeds of filaments in nonlinearly viscoelastic fluids. Fu HC; Wolgemuth CW; Powers TR Phys Fluids (1994); 2009 Mar; 21(3):33102. PubMed ID: 19547720 [TBL] [Abstract][Full Text] [Related]
43. Effect of body roll amplitude and arm rotation speed on propulsion of arm amputee swimmers. Lecrivain G; Payton C; Slaouti A; Kennedy I J Biomech; 2010 Apr; 43(6):1111-7. PubMed ID: 20106479 [TBL] [Abstract][Full Text] [Related]
44. Low-Reynolds-number swimming in viscous two-phase fluids. Du J; Keener JP; Guy RD; Fogelson AL Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Mar; 85(3 Pt 2):036304. PubMed ID: 22587177 [TBL] [Abstract][Full Text] [Related]
45. Swimming efficiency of spherical squirmers: beyond the Lighthill theory. Ishimoto K; Gaffney EA Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jul; 90(1):012704. PubMed ID: 25122332 [TBL] [Abstract][Full Text] [Related]
46. Electrokinetic energy conversion efficiency of viscoelastic fluids in a polyelectrolyte-grafted nanochannel. Jian Y; Li F; Liu Y; Chang L; Liu Q; Yang L Colloids Surf B Biointerfaces; 2017 Aug; 156():405-413. PubMed ID: 28551575 [TBL] [Abstract][Full Text] [Related]
47. Beating patterns of filaments in viscoelastic fluids. Fu HC; Wolgemuth CW; Powers TR Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Oct; 78(4 Pt 1):041913. PubMed ID: 18999461 [TBL] [Abstract][Full Text] [Related]
51. Numerical investigation of the hydrodynamics of carangiform swimming in the transitional and inertial flow regimes. Borazjani I; Sotiropoulos F J Exp Biol; 2008 May; 211(Pt 10):1541-58. PubMed ID: 18456881 [TBL] [Abstract][Full Text] [Related]
53. Quantitative determination of optical trapping strength and viscoelastic moduli inside living cells. Mas J; Richardson AC; Reihani SN; Oddershede LB; Berg-Sørensen K Phys Biol; 2013 Aug; 10(4):046006. PubMed ID: 23820071 [TBL] [Abstract][Full Text] [Related]
54. Numerical investigation of the hydrodynamics of anguilliform swimming in the transitional and inertial flow regimes. Borazjani I; Sotiropoulos F J Exp Biol; 2009 Feb; 212(Pt 4):576-92. PubMed ID: 19181905 [TBL] [Abstract][Full Text] [Related]
55. Body dynamics and hydrodynamics of swimming fish larvae: a computational study. Li G; Müller UK; van Leeuwen JL; Liu H J Exp Biol; 2012 Nov; 215(Pt 22):4015-33. PubMed ID: 23100489 [TBL] [Abstract][Full Text] [Related]
56. Viscoelastic fluids originated from enhanced solubility of sodium laurate in cetyl trimethyl ammonium bromide micelles through cooperative self-assembly. Koshy P; Verma G; Aswal VK; Venkatesh M; Hassan PA J Phys Chem B; 2010 Aug; 114(32):10462-70. PubMed ID: 20666452 [TBL] [Abstract][Full Text] [Related]
59. Viscoelasticity of model interphase chromosomes. Valet M; Rosa A J Chem Phys; 2014 Dec; 141(24):245101. PubMed ID: 25554185 [TBL] [Abstract][Full Text] [Related]
60. Confined swimming of bio-inspired microrobots in rectangular channels. Temel FZ; Yesilyurt S Bioinspir Biomim; 2015 Feb; 10(1):016015. PubMed ID: 25642947 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]