BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 23972033)

  • 1. Topology of the yeast Ras converting enzyme as inferred from cysteine accessibility studies.
    Hildebrandt ER; Davis DM; Deaton J; Krishnankutty RK; Lilla E; Schmidt WK
    Biochemistry; 2013 Sep; 52(38):6601-14. PubMed ID: 23972033
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Studies with recombinant Saccharomyces cerevisiae CaaX prenyl protease Rce1p.
    Dolence JM; Steward LE; Dolence EK; Wong DH; Poulter CD
    Biochemistry; 2000 Apr; 39(14):4096-104. PubMed ID: 10747800
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chemical inhibition of CaaX protease activity disrupts yeast Ras localization.
    Manandhar SP; Hildebrandt ER; Jacobsen WH; Santangelo GM; Schmidt WK
    Yeast; 2010 Jun; 27(6):327-43. PubMed ID: 20162532
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Endoplasmic reticulum membrane localization of Rce1p and Ste24p, yeast proteases involved in carboxyl-terminal CAAX protein processing and amino-terminal a-factor cleavage.
    Schmidt WK; Tam A; Fujimura-Kamada K; Michaelis S
    Proc Natl Acad Sci U S A; 1998 Sep; 95(19):11175-80. PubMed ID: 9736709
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mutational analysis of the ras converting enzyme reveals a requirement for glutamate and histidine residues.
    Plummer LJ; Hildebrandt ER; Porter SB; Rogers VA; McCracken J; Schmidt WK
    J Biol Chem; 2006 Feb; 281(8):4596-605. PubMed ID: 16361710
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dual roles for Ste24p in yeast a-factor maturation: NH2-terminal proteolysis and COOH-terminal CAAX processing.
    Tam A; Nouvet FJ; Fujimura-Kamada K; Slunt H; Sisodia SS; Michaelis S
    J Cell Biol; 1998 Aug; 142(3):635-49. PubMed ID: 9700155
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modulation of the inhibitor properties of dipeptidyl (acyloxy)methyl ketones toward the CaaX proteases.
    Dechert AM; MacNamara JP; Breevoort SR; Hildebrandt ER; Hembree NW; Rea AC; McLain DE; Porter SB; Schmidt WK; Dore TM
    Bioorg Med Chem; 2010 Sep; 18(17):6230-7. PubMed ID: 20696584
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The CaaX proteases, Afc1p and Rce1p, have overlapping but distinct substrate specificities.
    Trueblood CE; Boyartchuk VL; Picologlou EA; Rozema D; Poulter CD; Rine J
    Mol Cell Biol; 2000 Jun; 20(12):4381-92. PubMed ID: 10825201
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biochemical studies of Zmpste24-deficient mice.
    Leung GK; Schmidt WK; Bergo MO; Gavino B; Wong DH; Tam A; Ashby MN; Michaelis S; Young SG
    J Biol Chem; 2001 Aug; 276(31):29051-8. PubMed ID: 11399759
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification, functional expression and enzymic analysis of two distinct CaaX proteases from Caenorhabditis elegans.
    Cadiñanos J; Schmidt WK; Fueyo A; Varela I; López-Otín C; Freije JM
    Biochem J; 2003 Mar; 370(Pt 3):1047-54. PubMed ID: 12487630
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inhibition of the CaaX proteases Rce1p and Ste24p by peptidyl (acyloxy)methyl ketones.
    Porter SB; Hildebrandt ER; Breevoort SR; Mokry DZ; Dore TM; Schmidt WK
    Biochim Biophys Acta; 2007 Jun; 1773(6):853-62. PubMed ID: 17467817
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanism of farnesylated CAAX protein processing by the intramembrane protease Rce1.
    Manolaridis I; Kulkarni K; Dodd RB; Ogasawara S; Zhang Z; Bineva G; Reilly NO; Hanrahan SJ; Thompson AJ; Cronin N; Iwata S; Barford D
    Nature; 2013 Dec; 504(7479):301-5. PubMed ID: 24291792
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cloning and characterization of a mammalian prenyl protein-specific protease.
    Otto JC; Kim E; Young SG; Casey PJ
    J Biol Chem; 1999 Mar; 274(13):8379-82. PubMed ID: 10085068
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photoaffinity labeling of Ras converting enzyme 1 (Rce1p) using a benzophenone-containing peptide substrate.
    Kyro K; Manandhar SP; Mullen D; Schmidt WK; Distefano MD
    Bioorg Med Chem; 2010 Aug; 18(15):5675-84. PubMed ID: 20619662
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The topology of the ER-resident phospholipid methyltransferase Opi3 of
    Pawlik G; Renne MF; Kol MA; de Kroon AIPM
    J Biol Chem; 2020 Feb; 295(8):2473-2482. PubMed ID: 31932304
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Accessibility of cysteine residues substituted into the cytoplasmic regions of the alpha-factor receptor identifies the intracellular residues that are available for G protein interaction.
    Choi Y; Konopka JB
    Biochemistry; 2006 Dec; 45(51):15310-7. PubMed ID: 17176053
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CaaX converting enzymes.
    Ashby MN
    Curr Opin Lipidol; 1998 Apr; 9(2):99-102. PubMed ID: 9559265
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Proteolytic processing of certain CaaX motifs can occur in the absence of the Rce1p and Ste24p CaaX proteases.
    Krishnankutty RK; Kukday SS; Castleberry AJ; Breevoort SR; Schmidt WK
    Yeast; 2009 Aug; 26(8):451-63. PubMed ID: 19504624
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Solid-phase synthesis of a radiolabeled, biotinylated, and farnesylated Ca(1)a(2)X peptide substrate for Ras- and a-mating factor converting enzyme.
    Dolence EK; Dolence JM; Poulter CD
    Bioconjug Chem; 2001; 12(1):35-43. PubMed ID: 11170363
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The disulfide linkage and the free sulfhydryl accessibility of acyl-coenzyme A:cholesterol acyltransferase 1 as studied by using mPEG5000-maleimide.
    Guo ZY; Chang CC; Lu X; Chen J; Li BL; Chang TY
    Biochemistry; 2005 May; 44(17):6537-46. PubMed ID: 15850387
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.