BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 23972127)

  • 1. Interfering with UDP-GlcNAc metabolism and heparan sulfate expression using a sugar analogue reduces angiogenesis.
    van Wijk XM; Thijssen VL; Lawrence R; van den Broek SA; Dona M; Naidu N; Oosterhof A; van de Westerlo EM; Kusters LJ; Khaled Y; Jokela TA; Nowak-Sliwinska P; Kremer H; Stringer SE; Griffioen AW; van Wijk E; van Delft FL; van Kuppevelt TH
    ACS Chem Biol; 2013 Oct; 8(10):2331-8. PubMed ID: 23972127
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A 4-deoxy analogue of N-acetyl-D-glucosamine inhibits heparan sulphate expression and growth factor binding in vitro.
    van Wijk XM; Oosterhof A; van den Broek SA; Griffioen AW; ten Dam GB; Rutjes FP; van Delft FL; van Kuppevelt TH
    Exp Cell Res; 2010 Sep; 316(15):2504-12. PubMed ID: 20433828
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Endothelial heparan sulfate 6-O-sulfation levels regulate angiogenic responses of endothelial cells to fibroblast growth factor 2 and vascular endothelial growth factor.
    Ferreras C; Rushton G; Cole CL; Babur M; Telfer BA; van Kuppevelt TH; Gardiner JM; Williams KJ; Jayson GC; Avizienyte E
    J Biol Chem; 2012 Oct; 287(43):36132-46. PubMed ID: 22927437
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A common sugar-nucleotide-mediated mechanism of inhibition of (glycosamino)glycan biosynthesis, as evidenced by 6F-GalNAc (Ac3).
    van Wijk XM; Lawrence R; Thijssen VL; van den Broek SA; Troost R; van Scherpenzeel M; Naidu N; Oosterhof A; Griffioen AW; Lefeber DJ; van Delft FL; van Kuppevelt TH
    FASEB J; 2015 Jul; 29(7):2993-3002. PubMed ID: 25868729
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Heparan sulfate in angiogenesis: a target for therapy.
    van Wijk XM; van Kuppevelt TH
    Angiogenesis; 2014 Jul; 17(3):443-62. PubMed ID: 24146040
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inhibition of methylcoenzyme M methylreductase by a uridine 5'-diphospho-N-acetylglucosamine derivative.
    Sauer FD
    Biochem Biophys Res Commun; 1991 Jan; 174(2):619-24. PubMed ID: 1993058
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel glycosaminoglycan precursors as anti-amyloid agents part II.
    Kisilevsky R; Szarek WA
    J Mol Neurosci; 2002; 19(1-2):45-50. PubMed ID: 12212792
    [TBL] [Abstract][Full Text] [Related]  

  • 8. HSulf-1 inhibits angiogenesis and tumorigenesis in vivo.
    Narita K; Staub J; Chien J; Meyer K; Bauer M; Friedl A; Ramakrishnan S; Shridhar V
    Cancer Res; 2006 Jun; 66(12):6025-32. PubMed ID: 16778174
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chemoenzymatic synthesis of uridine 5'-diphospho-2-acetonyl-2-deoxy-alpha-D-glucose as C(2)-carbon isostere of UDP-GlcNAc.
    Cai L; Guan W; Chen W; Wang PG
    J Org Chem; 2010 May; 75(10):3492-4. PubMed ID: 20384302
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Endothelial heparan sulfate in angiogenesis.
    Fuster MM; Wang L
    Prog Mol Biol Transl Sci; 2010; 93():179-212. PubMed ID: 20807646
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chitin oligosaccharide synthesis by rhizobia and zebrafish embryos starts by glycosyl transfer to O4 of the reducing-terminal residue.
    Kamst E; Bakkers J; Quaedvlieg NE; Pilling J; Kijne JW; Lugtenberg BJ; Spaink HP
    Biochemistry; 1999 Mar; 38(13):4045-52. PubMed ID: 10194317
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation of heparan sulfate and chondroitin sulfate glycosaminoglycan biosynthesis by 4-fluoro-glucosamine in murine airway smooth muscle cells.
    Nigro J; Wang A; Mukhopadhyay D; Lauer M; Midura RJ; Sackstein R; Hascall VC
    J Biol Chem; 2009 Jun; 284(25):16832-16839. PubMed ID: 19346253
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inhibition of chitin synthetase from Saccharomyces cerevisiae by a new UDP-GlcNAc analogue.
    Behr JB; Gautier-Lefebvre I; Mvondo-Evina C; Guillerm G; Ryder NS
    J Enzyme Inhib; 2001; 16(2):107-12. PubMed ID: 11342279
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 6''-Azido-6''-deoxy-UDP-N-acetylglucosamine as a glycosyltransferase substrate.
    Mayer A; Gloster TM; Chou WK; Vocadlo DJ; Tanner ME
    Bioorg Med Chem Lett; 2011 Feb; 21(4):1199-201. PubMed ID: 21273069
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A functional heparan sulfate mimetic implicates both heparanase and heparan sulfate in tumor angiogenesis and invasion in a mouse model of multistage cancer.
    Joyce JA; Freeman C; Meyer-Morse N; Parish CR; Hanahan D
    Oncogene; 2005 Jun; 24(25):4037-51. PubMed ID: 15806157
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lack of L-iduronic acid in heparan sulfate affects interaction with growth factors and cell signaling.
    Jia J; Maccarana M; Zhang X; Bespalov M; Lindahl U; Li JP
    J Biol Chem; 2009 Jun; 284(23):15942-50. PubMed ID: 19336402
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mice deficient in heparan sulfate 6-O-sulfotransferase-1 exhibit defective heparan sulfate biosynthesis, abnormal placentation, and late embryonic lethality.
    Habuchi H; Nagai N; Sugaya N; Atsumi F; Stevens RL; Kimata K
    J Biol Chem; 2007 May; 282(21):15578-88. PubMed ID: 17405882
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Two N-acetylglucosaminyltransferases catalyze the biosynthesis of heparan sulfate.
    Fritz TA; Gabb MM; Wei G; Esko JD
    J Biol Chem; 1994 Nov; 269(46):28809-14. PubMed ID: 7961837
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Anti-angiogenic activity and mechanism of kaurane diterpenoids from Wedelia chinensis.
    Huang W; Liang Y; Wang J; Li G; Wang G; Li Y; Chung HY
    Phytomedicine; 2016 Mar; 23(3):283-92. PubMed ID: 26969382
    [TBL] [Abstract][Full Text] [Related]  

  • 20. UDP-(5F)-GlcNAc acts as a slow-binding inhibitor of MshA, a retaining glycosyltransferase.
    Frantom PA; Coward JK; Blanchard JS
    J Am Chem Soc; 2010 May; 132(19):6626-7. PubMed ID: 20411981
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.