BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 2397226)

  • 1. Biphasic voltage relaxation pattern observed in cells of Eremosphaera viridis after injection of charge-pulses of short duration: detection of tip clogging of intracellular microelectrodes by charge-pulse technique.
    Wehner G; Friedmann B; Zimmermann U
    Biochim Biophys Acta; 1990 Aug; 1027(2):105-15. PubMed ID: 2397226
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evidence for the presence of mobile charges in the cell membrane of Valonia utricularis.
    Benz R; Zimmermann U
    Biophys J; 1983 Jul; 43(1):13-26. PubMed ID: 6882859
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Determination of the individual electrical and transport properties of the plasmalemma and the tonoplast of the giant marine alga Ventricaria ventricosa by means of the integrated perfusion/charge-pulse technique: evidence for a multifolded tonoplast.
    Ryser C; Wang J; Mimietz S; Zimmermann U
    J Membr Biol; 1999 Mar; 168(2):183-97. PubMed ID: 10089238
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Separate determination of the electrical properties of the tonoplast and the plasmalemma of the giant-celled alga Valonia utricularis: vacuolar perfusion of turgescent cells with nystatin and other agents.
    Wang J; Spiess I; Ryser C; Zimmermann U
    J Membr Biol; 1997 Jun; 157(3):311-21. PubMed ID: 9178617
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coincident recording and stimulation of single and multiple neuronal activity with one extracellular microelectrode.
    Hentall ID
    J Neurosci Methods; 1991 Dec; 40(2-3):181-91. PubMed ID: 1800855
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reversible electrical breakdown of lipid bilayer membranes: a charge-pulse relaxation study.
    Benz R; Beckers F; Zimmermann U
    J Membr Biol; 1979 Jul; 48(2):181-204. PubMed ID: 480336
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pulse-length dependence of the electrical breakdown in lipid bilayer membranes.
    Benz R; Zimmermann U
    Biochim Biophys Acta; 1980 Apr; 597(3):637-42. PubMed ID: 7378404
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrophysiological characterization of different types of neurons recorded in vivo in the motor cortex of the cat. II. Membrane parameters, action potentials, current-induced voltage responses and electrotonic structures.
    Baranyi A; Szente MB; Woody CD
    J Neurophysiol; 1993 Jun; 69(6):1865-79. PubMed ID: 8350127
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Membrane properties of nociceptive neurones in lamina II of lumbar spinal cord in the cat.
    Iggo A; Molony V; Steedman WM
    J Physiol; 1988 Jun; 400():367-80. PubMed ID: 3418530
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The interpretation of current-voltage relations recorded from a spherical cell with a single microelectrode.
    Engel E; Barcilon V; Eisenberg RS
    Biophys J; 1972 Apr; 12(4):384-403. PubMed ID: 5019477
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrical properties of Valonia ventricosa.
    Lainson R; Field CD
    J Membr Biol; 1976 Oct; 29(1-2):81-94. PubMed ID: 978719
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Theory and operation of a single microelectrode voltage clamp.
    Finkel AS; Redman S
    J Neurosci Methods; 1984 Jun; 11(2):101-27. PubMed ID: 6482502
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mobile charges in the cell membranes ofHalicystis parvula.
    Benz R; Büchner KH; Zimmermann U
    Planta; 1988 Dec; 174(4):479-87. PubMed ID: 24221563
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An examination of frog myelinated axons using intracellular microelectrode recording: the role of voltage-dependent and leak conductances on the steady-state electrical properties.
    Poulter MO; Hashiguchi T; Padjen AL
    J Neurophysiol; 1993 Dec; 70(6):2301-12. PubMed ID: 7509856
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A new electrical method for the determination of the cell membrane area in plant cells.
    Zimmermann U; Benz R; Koch H
    Planta; 1981 Jul; 152(4):352-5. PubMed ID: 24301031
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sampling membrane potential, membrane resistance and electrode resistance with a glass electrode impaled into a single cell.
    Schiebe M; Jaeger U
    J Neurosci Methods; 1980 Apr; 2(2):191-202. PubMed ID: 7392671
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Membrane properties of dentate gyrus granule cells: comparison of sharp microelectrode and whole-cell recordings.
    Staley KJ; Otis TS; Mody I
    J Neurophysiol; 1992 May; 67(5):1346-58. PubMed ID: 1597717
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microelectrode studies of Necturus antral mucosa. II. Equivalent circuit analysis.
    Ashley SW; Soybel DI; De L; Cheung LY
    Am J Physiol; 1985 May; 248(5 Pt 1):G574-9. PubMed ID: 3993785
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Study of the inhibitor of the crayfish neuromuscular junction by presynaptic voltage control.
    Vyshedskiy A; Lin JW
    J Neurophysiol; 1997 Jan; 77(1):103-15. PubMed ID: 9120551
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Membrane charge moved at contraction thresholds in skeletal muscle fibres.
    Horowicz P; Schneider MF
    J Physiol; 1981 May; 314():595-633. PubMed ID: 6975815
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.