BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 2397233)

  • 1. Uptake of the cephalosporin, cephalexin, by a dipeptide transport carrier in the human intestinal cell line, Caco-2.
    Dantzig AH; Bergin L
    Biochim Biophys Acta; 1990 Sep; 1027(3):211-7. PubMed ID: 2397233
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cefaclor uptake by the proton-dependent dipeptide transport carrier of human intestinal Caco-2 cells and comparison to cephalexin uptake.
    Dantzig AH; Tabas LB; Bergin L
    Biochim Biophys Acta; 1992 Dec; 1112(2):167-73. PubMed ID: 1457450
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hormonal regulation of dipeptide transporter (PepT1) in Caco-2 cells with normal and anoxia/reoxygenation management.
    Sun BW; Zhao XC; Wang GJ; Li N; Li JS
    World J Gastroenterol; 2003 Apr; 9(4):808-12. PubMed ID: 12679938
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Carrier-mediated uptake of cephalexin in human intestinal cells.
    Dantzig AH; Bergin L
    Biochem Biophys Res Commun; 1988 Sep; 155(2):1082-7. PubMed ID: 3421959
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure-activity relationship of carbacephalosporins and cephalosporins: antibacterial activity and interaction with the intestinal proton-dependent dipeptide transport carrier of Caco-2 cells.
    Snyder NJ; Tabas LB; Berry DM; Duckworth DC; Spry DO; Dantzig AH
    Antimicrob Agents Chemother; 1997 Aug; 41(8):1649-57. PubMed ID: 9257735
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Proton-driven dipeptide uptake in primary cultured rabbit conjunctival epithelial cells.
    Basu SK; Haworth IS; Bolger MB; Lee VH
    Invest Ophthalmol Vis Sci; 1998 Nov; 39(12):2365-73. PubMed ID: 9804145
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transport mechanisms responsible for the absorption of loracarbef, cefixime, and cefuroxime axetil into human intestinal Caco-2 cells.
    Dantzig AH; Duckworth DC; Tabas LB
    Biochim Biophys Acta; 1994 Apr; 1191(1):7-13. PubMed ID: 8155686
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanism of riboflavine uptake by Caco-2 human intestinal epithelial cells.
    Said HM; Ma TY
    Am J Physiol; 1994 Jan; 266(1 Pt 1):G15-21. PubMed ID: 8304455
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metabolism, uptake, and transepithelial transport of the stereoisomers of Val-Val-Val in the human intestinal cell line, Caco-2.
    Tamura K; Lee CP; Smith PL; Borchardt RT
    Pharm Res; 1996 Nov; 13(11):1663-7. PubMed ID: 8956331
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characteristics of ceftibuten uptake into Caco-2 cells.
    Muranushi N; Horie K; Masuda K; Hirano K
    Pharm Res; 1994 Dec; 11(12):1761-5. PubMed ID: 7899241
    [TBL] [Abstract][Full Text] [Related]  

  • 11. H(+)-coupled dipeptide (glycylsarcosine) transport across apical and basal borders of human intestinal Caco-2 cell monolayers display distinctive characteristics.
    Thwaites DT; Brown CD; Hirst BH; Simmons NL
    Biochim Biophys Acta; 1993 Sep; 1151(2):237-45. PubMed ID: 8373798
    [TBL] [Abstract][Full Text] [Related]  

  • 12. H+ coupled transport of p.o. cephalosporins via dipeptide carriers in rabbit intestinal brush-border membranes: difference of transport characteristics between cefixime and cephradine.
    Inui K; Okano T; Maegawa H; Kato M; Takano M; Hori R
    J Pharmacol Exp Ther; 1988 Oct; 247(1):235-41. PubMed ID: 3171973
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanism and kinetics of transcellular transport of a new beta-lactam antibiotic loracarbef across an intestinal epithelial membrane model system (Caco-2).
    Hu M; Chen J; Zhu Y; Dantzig AH; Stratford RE; Kuhfeld MT
    Pharm Res; 1994 Oct; 11(10):1405-13. PubMed ID: 7855043
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transcellular transport of oral cephalosporins in human intestinal epithelial cells, Caco-2: interaction with dipeptide transport systems in apical and basolateral membranes.
    Matsumoto S; Saito H; Inui K
    J Pharmacol Exp Ther; 1994 Aug; 270(2):498-504. PubMed ID: 8071843
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Substrate specificity of the di/tripeptide transporter in human intestinal epithelia (Caco-2): identification of substrates that undergo H(+)-coupled absorption.
    Thwaites DT; Hirst BH; Simmons NL
    Br J Pharmacol; 1994 Nov; 113(3):1050-6. PubMed ID: 7858848
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of identical binding polypeptides for cephalosporins and dipeptides in intestinal brush-border membrane vesicles by photoaffinity labeling.
    Kramer W
    Biochim Biophys Acta; 1987 Nov; 905(1):65-74. PubMed ID: 3676315
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transport characteristics of ceftibuten, a new cephaloporin antibiotic, via the apical H+/dipeptide cotransport system in human intestinal cell line Caco-2: regulation by cell growth.
    Matsumoto S; Saito H; Inui K
    Pharm Res; 1995 Oct; 12(10):1483-7. PubMed ID: 8584486
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinetics and mechanism of in vitro uptake of amino-beta-lactam antibiotics by rat small intestine and relation to the intact-peptide transport system.
    Nakashima E; Tsuji A; Mizuo H; Yamana T
    Biochem Pharmacol; 1984 Nov; 33(21):3345-52. PubMed ID: 6497897
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transport of a large neutral amino acid in a human intestinal epithelial cell line (Caco-2): uptake and efflux of phenylalanine.
    Hu M; Borchardt RT
    Biochim Biophys Acta; 1992 Jun; 1135(3):233-44. PubMed ID: 1623010
    [TBL] [Abstract][Full Text] [Related]  

  • 20. D-cycloserine uses an active transport mechanism in the human intestinal cell line Caco 2.
    Ranaldi G; Islam K; Sambuy Y
    Antimicrob Agents Chemother; 1994 Jun; 38(6):1239-45. PubMed ID: 8092820
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.