These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 23972502)

  • 1. Removal of lead (Pb2+) from aqueous medium by using chars from co-pyrolysis.
    Bernardo M; Mendes S; Lapa N; Gonçalves M; Mendes B; Pinto F; Lopes H; Fonseca I
    J Colloid Interface Sci; 2013 Nov; 409():158-65. PubMed ID: 23972502
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sorption of arsenic, cadmium, and lead by chars produced from fast pyrolysis of wood and bark during bio-oil production.
    Mohan D; Pittman CU; Bricka M; Smith F; Yancey B; Mohammad J; Steele PH; Alexandre-Franco MF; Gómez-Serrano V; Gong H
    J Colloid Interface Sci; 2007 Jun; 310(1):57-73. PubMed ID: 17331527
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Toxicity of char residues produced in the co-pyrolysis of different wastes.
    Bernardo M; Lapa N; Gonçalves M; Barbosa R; Mendes B; Pinto F; Gulyurtlu I
    Waste Manag; 2010 Apr; 30(4):628-35. PubMed ID: 19932606
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lead sorption characteristics of various chicken bone part-derived chars.
    Park JH; Wang JJ; Kim SH; Kang SW; Cho JS; Delaune RD; Ok YS; Seo DC
    Environ Geochem Health; 2019 Aug; 41(4):1675-1685. PubMed ID: 29344748
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pyrolysis of waste biomass and plastics for production of biochar and its use for removal of heavy metals from aqueous solution.
    Singh E; Kumar A; Mishra R; You S; Singh L; Kumar S; Kumar R
    Bioresour Technol; 2021 Jan; 320(Pt A):124278. PubMed ID: 33099158
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Potential Valorization of Waste Tires as Activated Carbon-Based Adsorbent for Organic Contaminants Removal.
    Frikha K; Limousy L; Pons Claret J; Vaulot C; Pérez KF; Garcia BC; Bennici S
    Materials (Basel); 2022 Jan; 15(3):. PubMed ID: 35161040
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Physico-chemical properties of chars obtained in the co-pyrolysis of waste mixtures.
    Bernardo M; Lapa N; Gonçalves M; Mendes B; Pinto F; Fonseca I; Lopes H
    J Hazard Mater; 2012 Jun; 219-220():196-202. PubMed ID: 22520075
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Valorisation of spent tire rubber as carbon adsorbents for Pb(II) and W(VI) in the framework of a Circular Economy.
    Bernardo M; Lapa N; Pinto F; Nogueira M; Matos I; Ventura M; Ferraria AM; do Rego AMB; Fonseca IM
    Environ Sci Pollut Res Int; 2023 Jun; 30(30):74820-74837. PubMed ID: 37209332
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Low-energy and chemical-free activation of pyrolytic tire char and its adsorption characteristics.
    Quek A; Balasubramanian R
    J Air Waste Manag Assoc; 2009 Jun; 59(6):747-56. PubMed ID: 19603742
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cation exchange removal of Pb from aqueous solution by sorption onto NiO.
    Naeem A; Saddique MT; Mustafa S; Kim Y; Dilara B
    J Hazard Mater; 2009 Aug; 168(1):364-8. PubMed ID: 19297098
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Utilization of barley straws as biosorbents for Cu2+ and Pb2+ ions.
    Pehlivan E; Altun T; Parlayici S
    J Hazard Mater; 2009 May; 164(2-3):982-6. PubMed ID: 18976859
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ion-exchange of Pb2+, Cu2+, Zn2+, Cd2+, and Ni2+ ions from aqueous solution by Lewatit CNP 80.
    Pehlivan E; Altun T
    J Hazard Mater; 2007 Feb; 140(1-2):299-307. PubMed ID: 17045738
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanistic understanding of tetracycline sorption on waste tire powder and its chars as affected by Cu(2+) and pH.
    Lian F; Song Z; Liu Z; Zhu L; Xing B
    Environ Pollut; 2013 Jul; 178():264-70. PubMed ID: 23587856
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Techno-economic evaluation of the integrated biosorption-pyrolysis technology for lead (Pb) recovery from aqueous solution.
    Liu WJ; Zeng FX; Jiang H; Zhang XS; Yu HQ
    Bioresour Technol; 2011 May; 102(10):6260-5. PubMed ID: 21421305
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adding value to gasification and co-pyrolysis chars as removal agents of Cr
    Godinho D; Dias D; Bernardo M; Lapa N; Fonseca I; Lopes H; Pinto F
    J Hazard Mater; 2017 Jan; 321():173-182. PubMed ID: 27619963
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impact of pyrolysis temperature and activation on oily sludge-derived char for Pb(II) and Cd(II) removal from aqueous solution.
    Tian Y; Li J; McGill WB; Whitcombe TW
    Environ Sci Pollut Res Int; 2021 Feb; 28(5):5532-5547. PubMed ID: 32968903
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Relative distribution of Pb2+ sorption mechanisms by sludge-derived biochar.
    Lu H; Zhang W; Yang Y; Huang X; Wang S; Qiu R
    Water Res; 2012 Mar; 46(3):854-62. PubMed ID: 22189294
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Investigating the mechanisms of biochar's removal of lead from solution.
    Wang Z; Liu G; Zheng H; Li F; Ngo HH; Guo W; Liu C; Chen L; Xing B
    Bioresour Technol; 2015 Feb; 177():308-17. PubMed ID: 25496953
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sorption of lead from aqueous solutions by tea wastes.
    Liu N; Lin D; Lu H; Xu Y; Wu M; Luo J; Xing B
    J Environ Qual; 2009; 38(6):2260-6. PubMed ID: 19875782
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Removal of lead from aqueous solutions using Cassia grandis seed gum-graft-poly(methylmethacrylate).
    Singh V; Tiwari S; Sharma AK; Sanghi R
    J Colloid Interface Sci; 2007 Dec; 316(2):224-32. PubMed ID: 17719600
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.