BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 23972589)

  • 1. Presynaptic proteoglycans: sweet organizers of synapse development.
    Song YS; Kim E
    Neuron; 2013 Aug; 79(4):609-11. PubMed ID: 23972589
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An LRRTM4-HSPG complex mediates excitatory synapse development on dentate gyrus granule cells.
    Siddiqui TJ; Tari PK; Connor SA; Zhang P; Dobie FA; She K; Kawabe H; Wang YT; Brose N; Craig AM
    Neuron; 2013 Aug; 79(4):680-95. PubMed ID: 23911104
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Unbiased discovery of glypican as a receptor for LRRTM4 in regulating excitatory synapse development.
    de Wit J; O'Sullivan ML; Savas JN; Condomitti G; Caccese MC; Vennekens KM; Yates JR; Ghosh A
    Neuron; 2013 Aug; 79(4):696-711. PubMed ID: 23911103
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Glypicans and Heparan Sulfate in Synaptic Development, Neural Plasticity, and Neurological Disorders.
    Kamimura K; Maeda N
    Front Neural Circuits; 2021; 15():595596. PubMed ID: 33679334
    [TBL] [Abstract][Full Text] [Related]  

  • 5. LRRTMs Organize Synapses through Differential Engagement of Neurexin and PTPσ.
    Roppongi RT; Dhume SH; Padmanabhan N; Silwal P; Zahra N; Karimi B; Bomkamp C; Patil CS; Champagne-Jorgensen K; Twilley RE; Zhang P; Jackson MF; Siddiqui TJ
    Neuron; 2020 Apr; 106(1):108-125.e12. PubMed ID: 31995730
    [TBL] [Abstract][Full Text] [Related]  

  • 6. LRRTM3 Regulates Excitatory Synapse Development through Alternative Splicing and Neurexin Binding.
    Um JW; Choi TY; Kang H; Cho YS; Choii G; Uvarov P; Park D; Jeong D; Jeon S; Lee D; Kim H; Lee SH; Bae YC; Choi SY; Airaksinen MS; Ko J
    Cell Rep; 2016 Feb; 14(4):808-822. PubMed ID: 26776509
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Astrocyte-Secreted Glypican 4 Regulates Release of Neuronal Pentraxin 1 from Axons to Induce Functional Synapse Formation.
    Farhy-Tselnicker I; van Casteren ACM; Lee A; Chang VT; Aricescu AR; Allen NJ
    Neuron; 2017 Oct; 96(2):428-445.e13. PubMed ID: 29024665
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of neuronal versus astrocyte-derived heparan sulfate proteoglycans in brain development and injury.
    Farhy Tselnicker I; Boisvert MM; Allen NJ
    Biochem Soc Trans; 2014 Oct; 42(5):1263-9. PubMed ID: 25233401
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Presynaptic Neuronal Pentraxin Receptor Organizes Excitatory and Inhibitory Synapses.
    Lee SJ; Wei M; Zhang C; Maxeiner S; Pak C; Calado Botelho S; Trotter J; Sterky FH; Südhof TC
    J Neurosci; 2017 Feb; 37(5):1062-1080. PubMed ID: 27986928
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Heparan sulfate proteoglycans in Drosophila neuromuscular development.
    Kamimura K; Maeda N
    Biochim Biophys Acta Gen Subj; 2017 Oct; 1861(10):2442-2446. PubMed ID: 28645846
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of LRRTMs in synapse development and plasticity.
    Roppongi RT; Karimi B; Siddiqui TJ
    Neurosci Res; 2017 Mar; 116():18-28. PubMed ID: 27810425
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Unique versus Redundant Functions of Neuroligin Genes in Shaping Excitatory and Inhibitory Synapse Properties.
    Chanda S; Hale WD; Zhang B; Wernig M; Südhof TC
    J Neurosci; 2017 Jul; 37(29):6816-6836. PubMed ID: 28607166
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neuroligin-1 regulates excitatory synaptic transmission, LTP and EPSP-spike coupling in the dentate gyrus in vivo.
    Jedlicka P; Vnencak M; Krueger DD; Jungenitz T; Brose N; Schwarzacher SW
    Brain Struct Funct; 2015 Jan; 220(1):47-58. PubMed ID: 25713840
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synapse-associated protein-97 isoform-specific regulation of surface AMPA receptors and synaptic function in cultured neurons.
    Rumbaugh G; Sia GM; Garner CC; Huganir RL
    J Neurosci; 2003 Jun; 23(11):4567-76. PubMed ID: 12805297
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differential mechanisms of transmission at three types of mossy fiber synapse.
    Toth K; Suares G; Lawrence JJ; Philips-Tansey E; McBain CJ
    J Neurosci; 2000 Nov; 20(22):8279-89. PubMed ID: 11069934
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The sorting receptor SorCS3 is a stronger regulator of glutamate receptor functions compared to GABAergic mechanisms in the hippocampus.
    Christiansen GB; Andersen KH; Riis S; Nykjaer A; Bolcho U; Jensen MS; Holm MM
    Hippocampus; 2017 Mar; 27(3):235-248. PubMed ID: 27935149
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functions of Heparan Sulfate Proteoglycans in Development: Insights From Drosophila Models.
    Nakato H; Li JP
    Int Rev Cell Mol Biol; 2016; 325():275-93. PubMed ID: 27241223
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The HSPGs Syndecan and Dallylike bind the receptor phosphatase LAR and exert distinct effects on synaptic development.
    Johnson KG; Tenney AP; Ghose A; Duckworth AM; Higashi ME; Parfitt K; Marcu O; Heslip TR; Marsh JL; Schwarz TL; Flanagan JG; Van Vactor D
    Neuron; 2006 Feb; 49(4):517-31. PubMed ID: 16476662
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neuroscience. AMPA receptors--another twist?
    Farrant M; Cull-Candy SG
    Science; 2010 Mar; 327(5972):1463-5. PubMed ID: 20299582
    [No Abstract]   [Full Text] [Related]  

  • 20. SynCAM 1 improves survival of adult-born neurons by accelerating synapse maturation.
    Doengi M; Krupp AJ; Körber N; Stein V
    Hippocampus; 2016 Mar; 26(3):319-28. PubMed ID: 26332750
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.