BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

258 related articles for article (PubMed ID: 23972600)

  • 1. A pair of interneurons influences the choice between feeding and locomotion in Drosophila.
    Mann K; Gordon MD; Scott K
    Neuron; 2013 Aug; 79(4):754-65. PubMed ID: 23972600
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dopaminergic modulation of sucrose acceptance behavior in Drosophila.
    Marella S; Mann K; Scott K
    Neuron; 2012 Mar; 73(5):941-50. PubMed ID: 22405204
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An odorant-binding protein required for suppression of sweet taste by bitter chemicals.
    Jeong YT; Shim J; Oh SR; Yoon HI; Kim CH; Moon SJ; Montell C
    Neuron; 2013 Aug; 79(4):725-37. PubMed ID: 23972598
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Temporal dynamics of neuronal activation by Channelrhodopsin-2 and TRPA1 determine behavioral output in Drosophila larvae.
    Pulver SR; Pashkovski SL; Hornstein NJ; Garrity PA; Griffith LC
    J Neurophysiol; 2009 Jun; 101(6):3075-88. PubMed ID: 19339465
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identified Serotonin-Releasing Neurons Induce Behavioral Quiescence and Suppress Mating in Drosophila.
    Pooryasin A; Fiala A
    J Neurosci; 2015 Sep; 35(37):12792-812. PubMed ID: 26377467
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Secondary taste neurons that convey sweet taste and starvation in the Drosophila brain.
    Kain P; Dahanukar A
    Neuron; 2015 Feb; 85(4):819-32. PubMed ID: 25661186
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Silencing synaptic communication between random interneurons during Drosophila larval locomotion.
    Iyengar BG; Chou CJ; Vandamme KM; Klose MK; Zhao X; Akhtar-Danesh N; Campos AR; Atwood HL
    Genes Brain Behav; 2011 Nov; 10(8):883-900. PubMed ID: 21895974
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optical physiology and locomotor behaviors of wild-type and nacre zebrafish.
    O'Malley DM; Sankrithi NS; Borla MA; Parker S; Banden S; Gahtan E; Detrich HW
    Methods Cell Biol; 2004; 76():261-84. PubMed ID: 15602880
    [No Abstract]   [Full Text] [Related]  

  • 9. Behavioral and circuit basis of sucrose rejection by Drosophila females in a simple decision-making task.
    Yang CH; He R; Stern U
    J Neurosci; 2015 Jan; 35(4):1396-410. PubMed ID: 25632118
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Motor neurons controlling fluid ingestion in Drosophila.
    Manzo A; Silies M; Gohl DM; Scott K
    Proc Natl Acad Sci U S A; 2012 Apr; 109(16):6307-12. PubMed ID: 22474379
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A single pair of interneurons commands the Drosophila feeding motor program.
    Flood TF; Iguchi S; Gorczyca M; White B; Ito K; Yoshihara M
    Nature; 2013 Jul; 499(7456):83-7. PubMed ID: 23748445
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hierarchical Control of Drosophila Sleep, Courtship, and Feeding Behaviors by Male-Specific P1 Neurons.
    Zhang W; Guo C; Chen D; Peng Q; Pan Y
    Neurosci Bull; 2018 Dec; 34(6):1105-1110. PubMed ID: 30182322
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional Genetic Screen to Identify Interneurons Governing Behaviorally Distinct Aspects of Drosophila Larval Motor Programs.
    Clark MQ; McCumsey SJ; Lopez-Darwin S; Heckscher ES; Doe CQ
    G3 (Bethesda); 2016 Jul; 6(7):2023-31. PubMed ID: 27172197
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Four GABAergic interneurons impose feeding restraint in Drosophila.
    Pool AH; Kvello P; Mann K; Cheung SK; Gordon MD; Wang L; Scott K
    Neuron; 2014 Jul; 83(1):164-77. PubMed ID: 24991960
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thirst interneurons that promote water seeking and limit feeding behavior in
    Landayan D; Wang BP; Zhou J; Wolf FW
    Elife; 2021 May; 10():. PubMed ID: 34018925
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A subset of interneurons required for Drosophila larval locomotion.
    Yoshikawa S; Long H; Thomas JB
    Mol Cell Neurosci; 2016 Jan; 70():22-9. PubMed ID: 26621406
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Morphological characterization of the entire interneuron population reveals principles of neuromere organization in the ventral nerve cord of Drosophila.
    Rickert C; Kunz T; Harris KL; Whitington PM; Technau GM
    J Neurosci; 2011 Nov; 31(44):15870-83. PubMed ID: 22049430
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sucrose-induced plasticity in the basolateral amygdala in a 'comfort' feeding paradigm.
    Packard AEB; Di S; Egan AE; Fourman SM; Tasker JG; Ulrich-Lai YM
    Brain Struct Funct; 2017 Dec; 222(9):4035-4050. PubMed ID: 28597100
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Divergent Connectivity of Homologous Command-like Neurons Mediates Segment-Specific Touch Responses in Drosophila.
    Takagi S; Cocanougher BT; Niki S; Miyamoto D; Kohsaka H; Kazama H; Fetter RD; Truman JW; Zlatic M; Cardona A; Nose A
    Neuron; 2017 Dec; 96(6):1373-1387.e6. PubMed ID: 29198754
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Starvation-induced elevation of taste responsiveness and expression of a sugar taste receptor gene in Drosophila melanogaster.
    Nishimura A; Ishida Y; Takahashi A; Okamoto H; Sakabe M; Itoh M; Takano-Shimizu T; Ozaki M
    J Neurogenet; 2012 Jun; 26(2):206-15. PubMed ID: 22794108
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.