These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

255 related articles for article (PubMed ID: 23972600)

  • 1. A pair of interneurons influences the choice between feeding and locomotion in Drosophila.
    Mann K; Gordon MD; Scott K
    Neuron; 2013 Aug; 79(4):754-65. PubMed ID: 23972600
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dopaminergic modulation of sucrose acceptance behavior in Drosophila.
    Marella S; Mann K; Scott K
    Neuron; 2012 Mar; 73(5):941-50. PubMed ID: 22405204
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An odorant-binding protein required for suppression of sweet taste by bitter chemicals.
    Jeong YT; Shim J; Oh SR; Yoon HI; Kim CH; Moon SJ; Montell C
    Neuron; 2013 Aug; 79(4):725-37. PubMed ID: 23972598
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Temporal dynamics of neuronal activation by Channelrhodopsin-2 and TRPA1 determine behavioral output in Drosophila larvae.
    Pulver SR; Pashkovski SL; Hornstein NJ; Garrity PA; Griffith LC
    J Neurophysiol; 2009 Jun; 101(6):3075-88. PubMed ID: 19339465
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identified Serotonin-Releasing Neurons Induce Behavioral Quiescence and Suppress Mating in Drosophila.
    Pooryasin A; Fiala A
    J Neurosci; 2015 Sep; 35(37):12792-812. PubMed ID: 26377467
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Secondary taste neurons that convey sweet taste and starvation in the Drosophila brain.
    Kain P; Dahanukar A
    Neuron; 2015 Feb; 85(4):819-32. PubMed ID: 25661186
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Silencing synaptic communication between random interneurons during Drosophila larval locomotion.
    Iyengar BG; Chou CJ; Vandamme KM; Klose MK; Zhao X; Akhtar-Danesh N; Campos AR; Atwood HL
    Genes Brain Behav; 2011 Nov; 10(8):883-900. PubMed ID: 21895974
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optical physiology and locomotor behaviors of wild-type and nacre zebrafish.
    O'Malley DM; Sankrithi NS; Borla MA; Parker S; Banden S; Gahtan E; Detrich HW
    Methods Cell Biol; 2004; 76():261-84. PubMed ID: 15602880
    [No Abstract]   [Full Text] [Related]  

  • 9. Behavioral and circuit basis of sucrose rejection by Drosophila females in a simple decision-making task.
    Yang CH; He R; Stern U
    J Neurosci; 2015 Jan; 35(4):1396-410. PubMed ID: 25632118
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Motor neurons controlling fluid ingestion in Drosophila.
    Manzo A; Silies M; Gohl DM; Scott K
    Proc Natl Acad Sci U S A; 2012 Apr; 109(16):6307-12. PubMed ID: 22474379
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A single pair of interneurons commands the Drosophila feeding motor program.
    Flood TF; Iguchi S; Gorczyca M; White B; Ito K; Yoshihara M
    Nature; 2013 Jul; 499(7456):83-7. PubMed ID: 23748445
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hierarchical Control of Drosophila Sleep, Courtship, and Feeding Behaviors by Male-Specific P1 Neurons.
    Zhang W; Guo C; Chen D; Peng Q; Pan Y
    Neurosci Bull; 2018 Dec; 34(6):1105-1110. PubMed ID: 30182322
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional Genetic Screen to Identify Interneurons Governing Behaviorally Distinct Aspects of Drosophila Larval Motor Programs.
    Clark MQ; McCumsey SJ; Lopez-Darwin S; Heckscher ES; Doe CQ
    G3 (Bethesda); 2016 Jul; 6(7):2023-31. PubMed ID: 27172197
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Four GABAergic interneurons impose feeding restraint in Drosophila.
    Pool AH; Kvello P; Mann K; Cheung SK; Gordon MD; Wang L; Scott K
    Neuron; 2014 Jul; 83(1):164-77. PubMed ID: 24991960
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thirst interneurons that promote water seeking and limit feeding behavior in
    Landayan D; Wang BP; Zhou J; Wolf FW
    Elife; 2021 May; 10():. PubMed ID: 34018925
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A subset of interneurons required for Drosophila larval locomotion.
    Yoshikawa S; Long H; Thomas JB
    Mol Cell Neurosci; 2016 Jan; 70():22-9. PubMed ID: 26621406
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Morphological characterization of the entire interneuron population reveals principles of neuromere organization in the ventral nerve cord of Drosophila.
    Rickert C; Kunz T; Harris KL; Whitington PM; Technau GM
    J Neurosci; 2011 Nov; 31(44):15870-83. PubMed ID: 22049430
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sucrose-induced plasticity in the basolateral amygdala in a 'comfort' feeding paradigm.
    Packard AEB; Di S; Egan AE; Fourman SM; Tasker JG; Ulrich-Lai YM
    Brain Struct Funct; 2017 Dec; 222(9):4035-4050. PubMed ID: 28597100
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Divergent Connectivity of Homologous Command-like Neurons Mediates Segment-Specific Touch Responses in Drosophila.
    Takagi S; Cocanougher BT; Niki S; Miyamoto D; Kohsaka H; Kazama H; Fetter RD; Truman JW; Zlatic M; Cardona A; Nose A
    Neuron; 2017 Dec; 96(6):1373-1387.e6. PubMed ID: 29198754
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Starvation-induced elevation of taste responsiveness and expression of a sugar taste receptor gene in Drosophila melanogaster.
    Nishimura A; Ishida Y; Takahashi A; Okamoto H; Sakabe M; Itoh M; Takano-Shimizu T; Ozaki M
    J Neurogenet; 2012 Jun; 26(2):206-15. PubMed ID: 22794108
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.