These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 2397267)

  • 41. Multiscale osteointegration as a new paradigm for the design of calcium phosphate scaffolds for bone regeneration.
    Lan Levengood SK; Polak SJ; Wheeler MB; Maki AJ; Clark SG; Jamison RD; Wagoner Johnson AJ
    Biomaterials; 2010 May; 31(13):3552-63. PubMed ID: 20153042
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Advanced bioceramic composite for bone tissue engineering: design principles and structure-bioactivity relationship.
    El-Ghannam AR
    J Biomed Mater Res A; 2004 Jun; 69(3):490-501. PubMed ID: 15127396
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Bone bonding mechanism of beta-tricalcium phosphate.
    Kotani S; Fujita Y; Kitsugi T; Nakamura T; Yamamuro T; Ohtsuki C; Kokubo T
    J Biomed Mater Res; 1991 Oct; 25(10):1303-15. PubMed ID: 1812121
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Synthesis and characterization of porous beta-tricalcium phosphate blocks.
    Bohner M; van Lenthe GH; Grünenfelder S; Hirsiger W; Evison R; Müller R
    Biomaterials; 2005 Nov; 26(31):6099-105. PubMed ID: 15885772
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Effect of calcium phosphate coating characteristics on early post-operative bone tissue ingrowth.
    Ducheyne P; Beight J; Cuckler J; Evans B; Radin S
    Biomaterials; 1990 Oct; 11(8):531-40. PubMed ID: 2279054
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Macroporous calcium phosphate ceramics for bone substitution: a tracer study on biodegradation with 45Ca tracer.
    den Hollander W; Patka P; Klein CP; Heidendal GA
    Biomaterials; 1991 Aug; 12(6):569-73. PubMed ID: 1772955
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Osseous substance formation induced in porous calcium phosphate ceramics in soft tissues.
    Klein C; de Groot K; Chen W; Li Y; Zhang X
    Biomaterials; 1994 Jan; 15(1):31-4. PubMed ID: 8161654
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Influence of biphasic calcium phosphate granulometry on bone ingrowth, ceramic resorption, and inflammatory reactions: preliminary in vitro and in vivo study.
    Malard O; Bouler JM; Guicheux J; Heymann D; Pilet P; Coquard C; Daculsi G
    J Biomed Mater Res; 1999 Jul; 46(1):103-11. PubMed ID: 10357141
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Assessment of osteogenic potential of the natural origin bioceramics implanted into the human infrabony periodontal defects.
    Ljusković B; Skaro-Milić A; Brajović M; Spaić R; Bojanić N
    Vojnosanit Pregl; 1996; 53(2):91-100. PubMed ID: 9174395
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Stereolithography-Based Additive Manufacturing of High-Performance Osteoinductive Calcium Phosphate Ceramics by a Digital Light-Processing System.
    Wei Y; Zhao D; Cao Q; Wang J; Wu Y; Yuan B; Li X; Chen X; Zhou Y; Yang X; Zhu X; Tu C; Zhang X
    ACS Biomater Sci Eng; 2020 Mar; 6(3):1787-1797. PubMed ID: 33455401
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Relationship between the degradation behaviour of calcium phosphate ceramics and their physical-chemical characteristics and ultrastructural geometry.
    Klein CP; Driessen AA; de Groot K
    Biomaterials; 1984 May; 5(3):157-60. PubMed ID: 6733218
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Modern bone substitutes with emphasis on calcium phosphate ceramics and osteoinductors.
    Rawlings CE
    Neurosurgery; 1993 Nov; 33(5):935-8. PubMed ID: 8264898
    [No Abstract]   [Full Text] [Related]  

  • 53. Bioinspired approaches to toughen calcium phosphate-based ceramics for bone repair.
    Dee P; You HY; Teoh SH; Le Ferrand H
    J Mech Behav Biomed Mater; 2020 Dec; 112():104078. PubMed ID: 32932158
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Bioceramics consisting of calcium phosphate salts.
    de Groot K
    Biomaterials; 1980 Jan; 1(1):47-50. PubMed ID: 7470552
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Macroporous biphasic calcium phosphate ceramics: influence of five synthesis parameters on compressive strength.
    Bouler JM; Trécant M; Delécrin J; Royer J; Passuti N; Daculsi G
    J Biomed Mater Res; 1996 Dec; 32(4):603-9. PubMed ID: 8953150
    [TBL] [Abstract][Full Text] [Related]  

  • 56. [Biodegradable ceramics as a biomaterial].
    Shibata KI
    Gifu Shika Gakkai Zasshi; 1983 Feb; 10(2):341-5. PubMed ID: 6576044
    [No Abstract]   [Full Text] [Related]  

  • 57. [The use of T.P.C. fine granules in dentistry].
    Tripi F; Rasà R; Acquaviva A
    Stomatol Mediterr; 1987; 7(1):23-8. PubMed ID: 3483528
    [No Abstract]   [Full Text] [Related]  

  • 58. Multiple uses of resorbable tricalcium phosphate.
    Judy KW
    N Y J Dent; 1983 Dec; 53(8):401-5. PubMed ID: 6581441
    [No Abstract]   [Full Text] [Related]  

  • 59. Fine ceramic lattices prepared by extrusion freeforming.
    Yang H; Yang S; Chi X; Evans JR
    J Biomed Mater Res B Appl Biomater; 2006 Oct; 79(1):116-21. PubMed ID: 16615069
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Tissue ingrowth into mandibular intrabony porous ceramic implants.
    Pedersen KN; Haanaes HR; Lyng S
    Int J Oral Surg; 1974; 3(4):158-65. PubMed ID: 4213504
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.