BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 23972856)

  • 1. A computational model of reactive oxygen species and redox balance in cardiac mitochondria.
    Gauthier LD; Greenstein JL; Cortassa S; O'Rourke B; Winslow RL
    Biophys J; 2013 Aug; 105(4):1045-56. PubMed ID: 23972856
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Complex I-mediated reactive oxygen species generation: modulation by cytochrome c and NAD(P)+ oxidation-reduction state.
    Kushnareva Y; Murphy AN; Andreyev A
    Biochem J; 2002 Dec; 368(Pt 2):545-53. PubMed ID: 12180906
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reactive oxygen species production induced by pore opening in cardiac mitochondria: The role of complex II.
    Korge P; John SA; Calmettes G; Weiss JN
    J Biol Chem; 2017 Jun; 292(24):9896-9905. PubMed ID: 28450394
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reactive oxygen species production induced by pore opening in cardiac mitochondria: The role of complex III.
    Korge P; Calmettes G; John SA; Weiss JN
    J Biol Chem; 2017 Jun; 292(24):9882-9895. PubMed ID: 28450391
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Redox-optimized ROS balance: a unifying hypothesis.
    Aon MA; Cortassa S; O'Rourke B
    Biochim Biophys Acta; 2010; 1797(6-7):865-77. PubMed ID: 20175987
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Redox-optimized ROS balance and the relationship between mitochondrial respiration and ROS.
    Cortassa S; O'Rourke B; Aon MA
    Biochim Biophys Acta; 2014 Feb; 1837(2):287-95. PubMed ID: 24269780
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of isoflurane on complex II‑associated mitochondrial respiration and reactive oxygen species production: Roles of nitric oxide and mitochondrial KATP channels.
    Wang J; Sun J; Qiao S; Li H; Che T; Wang C; An J
    Mol Med Rep; 2019 Nov; 20(5):4383-4390. PubMed ID: 31545457
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reactive oxygen species and nitric oxide in plant mitochondria: origin and redundant regulatory systems.
    Blokhina O; Fagerstedt KV
    Physiol Plant; 2010 Apr; 138(4):447-62. PubMed ID: 20059731
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multistationary and oscillatory modes of free radicals generation by the mitochondrial respiratory chain revealed by a bifurcation analysis.
    Selivanov VA; Cascante M; Friedman M; Schumaker MF; Trucco M; Votyakova TV
    PLoS Comput Biol; 2012; 8(9):e1002700. PubMed ID: 23028295
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Q-site inhibitor induced ROS production of mitochondrial complex II is attenuated by TCA cycle dicarboxylates.
    Siebels I; Dröse S
    Biochim Biophys Acta; 2013 Oct; 1827(10):1156-64. PubMed ID: 23800966
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Respiration and substrate transport rates as well as reactive oxygen species production distinguish mitochondria from brain and liver.
    Gusdon AM; Fernandez-Bueno GA; Wohlgemuth S; Fernandez J; Chen J; Mathews CE
    BMC Biochem; 2015 Sep; 16():22. PubMed ID: 26358560
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reactive oxygen species are generated by the respiratory complex II--evidence for lack of contribution of the reverse electron flow in complex I.
    Moreno-Sánchez R; Hernández-Esquivel L; Rivero-Segura NA; Marín-Hernández A; Neuzil J; Ralph SJ; Rodríguez-Enríquez S
    FEBS J; 2013 Feb; 280(3):927-38. PubMed ID: 23206332
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reactive oxygen species production in energized cardiac mitochondria during hypoxia/reoxygenation: modulation by nitric oxide.
    Korge P; Ping P; Weiss JN
    Circ Res; 2008 Oct; 103(8):873-80. PubMed ID: 18776040
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reverse electron flow-induced ROS production is attenuated by activation of mitochondrial Ca2+-sensitive K+ channels.
    Heinen A; Aldakkak M; Stowe DF; Rhodes SS; Riess ML; Varadarajan SG; Camara AK
    Am J Physiol Heart Circ Physiol; 2007 Sep; 293(3):H1400-7. PubMed ID: 17513497
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The mechanism of mitochondrial superoxide production by the cytochrome bc1 complex.
    Dröse S; Brandt U
    J Biol Chem; 2008 Aug; 283(31):21649-54. PubMed ID: 18522938
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Integrating mitochondrial energetics, redox and ROS metabolic networks: a two-compartment model.
    Kembro JM; Aon MA; Winslow RL; O'Rourke B; Cortassa S
    Biophys J; 2013 Jan; 104(2):332-43. PubMed ID: 23442855
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Production of reactive oxygen species by mitochondria: central role of complex III.
    Chen Q; Vazquez EJ; Moghaddas S; Hoppel CL; Lesnefsky EJ
    J Biol Chem; 2003 Sep; 278(38):36027-31. PubMed ID: 12840017
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The dependence of brain mitochondria reactive oxygen species production on oxygen level is linear, except when inhibited by antimycin A.
    Stepanova A; Konrad C; Manfredi G; Springett R; Ten V; Galkin A
    J Neurochem; 2019 Mar; 148(6):731-745. PubMed ID: 30582748
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mitochondrial reactive oxygen species production in excitable cells: modulators of mitochondrial and cell function.
    Stowe DF; Camara AK
    Antioxid Redox Signal; 2009 Jun; 11(6):1373-414. PubMed ID: 19187004
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mitochondrial complex I ROS production and redox signaling in hypoxia.
    Okoye CN; Koren SA; Wojtovich AP
    Redox Biol; 2023 Nov; 67():102926. PubMed ID: 37871533
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.