BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

266 related articles for article (PubMed ID: 23972856)

  • 21. Generator-specific targets of mitochondrial reactive oxygen species.
    Bleier L; Wittig I; Heide H; Steger M; Brandt U; Dröse S
    Free Radic Biol Med; 2015 Jan; 78():1-10. PubMed ID: 25451644
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The effect of permeability transition pore opening on reactive oxygen species production in rat brain mitochondria.
    Akopova OV; Kolchynskayia LY; Nosar' VY; Smyrnov AN; Malisheva MK; Man'kovskaia YN; Sahach VF
    Ukr Biokhim Zh (1999); 2011; 83(6):46-55. PubMed ID: 22364018
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mitochondrial respiratory chain complexes as sources and targets of thiol-based redox-regulation.
    Dröse S; Brandt U; Wittig I
    Biochim Biophys Acta; 2014 Aug; 1844(8):1344-54. PubMed ID: 24561273
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Reactive oxygen species production by forward and reverse electron fluxes in the mitochondrial respiratory chain.
    Selivanov VA; Votyakova TV; Pivtoraiko VN; Zeak J; Sukhomlin T; Trucco M; Roca J; Cascante M
    PLoS Comput Biol; 2011 Mar; 7(3):e1001115. PubMed ID: 21483483
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Inhibitors of ROS production by the ubiquinone-binding site of mitochondrial complex I identified by chemical screening.
    Orr AL; Ashok D; Sarantos MR; Shi T; Hughes RE; Brand MD
    Free Radic Biol Med; 2013 Dec; 65():1047-1059. PubMed ID: 23994103
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mitochondrial complex I ROS production and redox signaling in hypoxia.
    Okoye CN; Koren SA; Wojtovich AP
    Redox Biol; 2023 Nov; 67():102926. PubMed ID: 37871533
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Ischemic defects in the electron transport chain increase the production of reactive oxygen species from isolated rat heart mitochondria.
    Chen Q; Moghaddas S; Hoppel CL; Lesnefsky EJ
    Am J Physiol Cell Physiol; 2008 Feb; 294(2):C460-6. PubMed ID: 18077608
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Molecular mechanisms of superoxide production by the mitochondrial respiratory chain.
    Dröse S; Brandt U
    Adv Exp Med Biol; 2012; 748():145-69. PubMed ID: 22729857
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Redox regulation of mitochondrial functional activity by quinones.
    Krylova NG; Kulahava TA; Cheschevik VT; Dremza IK; Semenkova GN; Zavodnik IB
    Physiol Int; 2016 Dec; 103(4):439-458. PubMed ID: 28229632
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effects of bioenergetics, temperature and cadmium on liver mitochondria reactive oxygen species production and consumption.
    Okoye CN; MacDonald-Jay N; Kamunde C
    Aquat Toxicol; 2019 Sep; 214():105264. PubMed ID: 31377504
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mitochondrial ('mild') uncoupling and ROS production: physiologically relevant or not?
    Shabalina IG; Nedergaard J
    Biochem Soc Trans; 2011 Oct; 39(5):1305-9. PubMed ID: 21936806
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Oxygen-dependence of mitochondrial ROS production as detected by Amplex Red assay.
    Grivennikova VG; Kareyeva AV; Vinogradov AD
    Redox Biol; 2018 Jul; 17():192-199. PubMed ID: 29702406
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Inhibition of mitochondrial respiration as a source of adaphostin-induced reactive oxygen species and cytotoxicity.
    Le SB; Hailer MK; Buhrow S; Wang Q; Flatten K; Pediaditakis P; Bible KC; Lewis LD; Sausville EA; Pang YP; Ames MM; Lemasters JJ; Holmuhamedov EL; Kaufmann SH
    J Biol Chem; 2007 Mar; 282(12):8860-72. PubMed ID: 17213201
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mitochondrial permeability transition pore: sensitivity to opening and mechanistic dependence on substrate availability.
    Briston T; Roberts M; Lewis S; Powney B; M Staddon J; Szabadkai G; Duchen MR
    Sci Rep; 2017 Sep; 7(1):10492. PubMed ID: 28874733
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mitochondrial fatty acid oxidation and oxidative stress: lack of reverse electron transfer-associated production of reactive oxygen species.
    Schönfeld P; Wieckowski MR; Lebiedzińska M; Wojtczak L
    Biochim Biophys Acta; 2010; 1797(6-7):929-38. PubMed ID: 20085746
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mitochondrial function and redox control in the aging eye: role of MsrA and other repair systems in cataract and macular degenerations.
    Brennan LA; Kantorow M
    Exp Eye Res; 2009 Feb; 88(2):195-203. PubMed ID: 18588875
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The contribution of mitochondrial respiratory complexes to the production of reactive oxygen species.
    McLennan HR; Degli Esposti M
    J Bioenerg Biomembr; 2000 Apr; 32(2):153-62. PubMed ID: 11768748
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A mitochondrial oscillator dependent on reactive oxygen species.
    Cortassa S; Aon MA; Winslow RL; O'Rourke B
    Biophys J; 2004 Sep; 87(3):2060-73. PubMed ID: 15345581
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mitochondrial reactive oxygen species-mediated signaling in endothelial cells.
    Zhang DX; Gutterman DD
    Am J Physiol Heart Circ Physiol; 2007 May; 292(5):H2023-31. PubMed ID: 17237240
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Detection of mitochondria-generated reactive oxygen species in cells using multiple probes and methods: Potentials, pitfalls, and the future.
    Cheng G; Zielonka M; Dranka B; Kumar SN; Myers CR; Bennett B; Garces AM; Dias Duarte Machado LG; Thiebaut D; Ouari O; Hardy M; Zielonka J; Kalyanaraman B
    J Biol Chem; 2018 Jun; 293(26):10363-10380. PubMed ID: 29739855
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.