BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

651 related articles for article (PubMed ID: 23973412)

  • 1. The effect of acclimation temperature on thermal activity thresholds in polar terrestrial invertebrates.
    Everatt MJ; Bale JS; Convey P; Worland MR; Hayward SA
    J Insect Physiol; 2013 Oct; 59(10):1057-64. PubMed ID: 23973412
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Are the Antarctic dipteran, Eretmoptera murphyi, and Arctic collembolan, Megaphorura arctica, vulnerable to rising temperatures?
    Everatt MJ; Convey P; Worland MR; Bale JS; Hayward SA
    Bull Entomol Res; 2014 Aug; 104(4):494-503. PubMed ID: 24816280
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Acclimation effects on thermal tolerances of springtails from sub-Antarctic Marion Island: indigenous and invasive species.
    Slabber S; Worland MR; Leinaas HP; Chown SL
    J Insect Physiol; 2007 Feb; 53(2):113-25. PubMed ID: 17222862
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of acclimation on heat-escape temperatures of two aphid species: Implications for estimating behavioral response of insects to climate warming.
    Ma G; Ma CS
    J Insect Physiol; 2012 Mar; 58(3):303-9. PubMed ID: 21939662
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Acclimation and thermal tolerance in Antarctic marine ectotherms.
    Peck LS; Morley SA; Richard J; Clark MS
    J Exp Biol; 2014 Jan; 217(Pt 1):16-22. PubMed ID: 24353200
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermal preference, thermal resistance, and metabolic rate of juvenile Chinese pond turtles Mauremys reevesii acclimated to different temperatures.
    Xu W; Dang W; Geng J; Lu HL
    J Therm Biol; 2015 Oct; 53():119-24. PubMed ID: 26590464
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Can temperate insects take the heat? A case study of the physiological and behavioural responses in a common ant, Iridomyrmex purpureus (Formicidae), with potential climate change.
    Andrew NR; Hart RA; Jung MP; Hemmings Z; Terblanche JS
    J Insect Physiol; 2013 Sep; 59(9):870-80. PubMed ID: 23806604
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of acclimation temperature on thermal tolerance, locomotion performance and respiratory metabolism in Acheta domesticus L. (Orthoptera: Gryllidae).
    Lachenicht MW; Clusella-Trullas S; Boardman L; Le Roux C; Terblanche JS
    J Insect Physiol; 2010 Jul; 56(7):822-30. PubMed ID: 20197070
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermal tolerance in a south-east African population of the tsetse fly Glossina pallidipes (Diptera, Glossinidae): implications for forecasting climate change impacts.
    Terblanche JS; Clusella-Trullas S; Deere JA; Chown SL
    J Insect Physiol; 2008 Jan; 54(1):114-27. PubMed ID: 17889900
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Desiccation stress at sub-zero temperatures in polar terrestrial arthropods.
    Worland MR; Block W
    J Insect Physiol; 2003 Mar; 49(3):193-203. PubMed ID: 12769994
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Potential for thermal tolerance to mediate climate change effects on three members of a cool temperate lizard genus, Niveoscincus.
    Caldwell AJ; While GM; Beeton NJ; Wapstra E
    J Therm Biol; 2015 Aug; 52():14-23. PubMed ID: 26267494
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Environmental physiology of three species of Collembola at Cape Hallett, North Victoria Land, Antarctica.
    Sinclair BJ; Terblanche JS; Scott MB; Blatch GL; Jaco Klok C; Chown SL
    J Insect Physiol; 2006 Jan; 52(1):29-50. PubMed ID: 16246360
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intraspecific variation in thermal tolerance and acclimation capacity in brook trout (Salvelinus fontinalis): physiological implications for climate change.
    Stitt BC; Burness G; Burgomaster KA; Currie S; McDermid JL; Wilson CC
    Physiol Biochem Zool; 2014; 87(1):15-29. PubMed ID: 24457918
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Vulnerability to climate warming of Liolaemus pictus (Squamata, Liolaemidae), a lizard from the cold temperate climate in Patagonia, Argentina.
    Kubisch EL; Fernández JB; Ibargüengoytía NR
    J Comp Physiol B; 2016 Feb; 186(2):243-53. PubMed ID: 26679700
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A comparison of low temperature tolerance traits between closely related aphids from the tropics, temperate zone, and Arctic.
    Hazell SP; Groutides C; Neve BP; Blackburn TM; Bale JS
    J Insect Physiol; 2010 Feb; 56(2):115-22. PubMed ID: 19723528
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Time course of acclimation of critical thermal limits in two springtail species (Collembola).
    Kuyucu AC; Chown SL
    J Insect Physiol; 2021 Apr; 130():104209. PubMed ID: 33609519
    [TBL] [Abstract][Full Text] [Related]  

  • 17. No trade-off between high and low temperature tolerance in a winter acclimatized Danish Drosophila subobscura population.
    Sørensen JG; Kristensen TN; Loeschcke V; Schou MF
    J Insect Physiol; 2015 Jun; 77():9-14. PubMed ID: 25846012
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microhabitat and body size effects on heat tolerance: implications for responses to climate change (army ants: Formicidae, Ecitoninae).
    Baudier KM; Mudd AE; Erickson SC; O'Donnell S
    J Anim Ecol; 2015 Sep; 84(5):1322-30. PubMed ID: 26072696
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Upper thermal tolerance plasticity in tropical amphibian species from contrasting habitats: implications for warming impact prediction.
    Simon MN; Ribeiro PL; Navas CA
    J Therm Biol; 2015 Feb; 48():36-44. PubMed ID: 25660628
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Experimental studies of ice nucleation in an Antarctic springtail (Collembola, Isotomidae).
    Block W; Worland MR
    Cryobiology; 2001 May; 42(3):170-81. PubMed ID: 11578116
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 33.