BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 23973611)

  • 1. Cohesive zone modeling of mode I tearing in thin soft materials.
    Bhattacharjee T; Barlingay M; Tasneem H; Roan E; Vemaganti K
    J Mech Behav Biomed Mater; 2013 Dec; 28():37-46. PubMed ID: 23973611
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling the biomechanical and injury response of human liver parenchyma under tensile loading.
    Untaroiu CD; Lu YC; Siripurapu SK; Kemper AR
    J Mech Behav Biomed Mater; 2015 Jan; 41():280-91. PubMed ID: 25092147
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fracture analysis for biological materials with an expanded cohesive zone model.
    An B; Zhao X; Arola D; Zhang D
    J Biomech; 2014 Jul; 47(10):2244-8. PubMed ID: 24877880
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Feasibility of extracting tissue material properties via cohesive elements: a finite element approach to probe insertion procedures in non-invasive spine surgeries.
    Bojairami IE; Hamedzadeh A; Driscoll M
    Med Biol Eng Comput; 2021 Oct; 59(10):2051-2061. PubMed ID: 34431026
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeling failure of soft anisotropic materials with application to arteries.
    Volokh KY
    J Mech Behav Biomed Mater; 2011 Nov; 4(8):1582-94. PubMed ID: 22098860
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling Soft Tissue Damage and Failure Using a Combined Particle/Continuum Approach.
    Rausch MK; Karniadakis GE; Humphrey JD
    Biomech Model Mechanobiol; 2017 Feb; 16(1):249-261. PubMed ID: 27538848
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of modulus mismatch on crack propagation and toughness enhancement in bioinspired composites.
    Murali P; Bhandakkar TK; Cheah WL; Jhon MH; Gao H; Ahluwalia R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jul; 84(1 Pt 2):015102. PubMed ID: 21867242
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Material characterization of liver parenchyma using specimen-specific finite element models.
    Untaroiu CD; Lu YC
    J Mech Behav Biomed Mater; 2013 Oct; 26():11-22. PubMed ID: 23800843
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experiments and hyperelastic modeling of porcine meniscus show heterogeneity at high strains.
    Long T; Shende S; Lin CY; Vemaganti K
    Biomech Model Mechanobiol; 2022 Dec; 21(6):1641-1658. PubMed ID: 35882676
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A mesostructurally-based anisotropic continuum model for biological soft tissues--decoupled invariant formulation.
    Limbert G
    J Mech Behav Biomed Mater; 2011 Nov; 4(8):1637-57. PubMed ID: 22098866
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A material modeling approach for the effective response of planar soft tissues for efficient computational simulations.
    Zhang W; Zakerzadeh R; Zhang W; Sacks MS
    J Mech Behav Biomed Mater; 2019 Jan; 89():168-198. PubMed ID: 30286376
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cohesive behavior of soft biological adhesives: experiments and modeling.
    Dastjerdi AK; Pagano M; Kaartinen MT; McKee MD; Barthelat F
    Acta Biomater; 2012 Sep; 8(9):3349-59. PubMed ID: 22588071
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A visco-hyperelastic constitutive approach for modeling polyvinyl alcohol sponge.
    Karimi A; Navidbakhsh M; Beigzadeh B
    Tissue Cell; 2014 Feb; 46(1):97-102. PubMed ID: 24405852
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Estimation of fracture toughness of liver tissue: experiments and validation.
    Gokgol C; Basdogan C; Canadinc D
    Med Eng Phys; 2012 Sep; 34(7):882-91. PubMed ID: 22024208
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Re-evaluating the toughness of human cortical bone.
    Yang QD; Cox BN; Nalla RK; Ritchie RO
    Bone; 2006 Jun; 38(6):878-87. PubMed ID: 16338188
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stiffening by fiber reinforcement in soft materials: a hyperelastic theory at large strains and its application.
    Ciarletta P; Izzo I; Micera S; Tendick F
    J Mech Behav Biomed Mater; 2011 Oct; 4(7):1359-68. PubMed ID: 21783146
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficient isogeometric thin shell formulations for soft biological materials.
    Roohbakhshan F; Sauer RA
    Biomech Model Mechanobiol; 2017 Oct; 16(5):1569-1597. PubMed ID: 28405768
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamic simulation of viscoelastic soft tissue in acoustic radiation force creep imaging.
    Zhao X; Pelegri AA
    J Biomech Eng; 2014 Sep; 136(9):094502. PubMed ID: 24975997
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Constitutive formulation and numerical analysis of the biomechanical behaviour of forefoot plantar soft tissue.
    Fontanella CG; Favaretto E; Carniel EL; Natali AN
    Proc Inst Mech Eng H; 2014 Sep; 228(9):942-51. PubMed ID: 25313025
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterisation and modelling of brain tissue for surgical simulation.
    Mendizabal A; Aguinaga I; Sánchez E
    J Mech Behav Biomed Mater; 2015 May; 45():1-10. PubMed ID: 25676499
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.