These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

484 related articles for article (PubMed ID: 23973615)

  • 21. A nonlinear viscoelastic finite element model of polyethylene.
    Chen PC; Colwell CW; D'Lima DD
    Mol Cell Biomech; 2011 Jun; 8(2):135-48. PubMed ID: 21608414
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Modified Bilston nonlinear viscoelastic model for finite element head injury studies.
    Shen F; Tay TE; Li JZ; Nigen S; Lee PV; Chan HK
    J Biomech Eng; 2006 Oct; 128(5):797-801. PubMed ID: 16995770
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The mechanical behaviour of brain tissue: large strain response and constitutive modelling.
    Hrapko M; van Dommelen JA; Peters GW; Wismans JS
    Biorheology; 2006; 43(5):623-36. PubMed ID: 17047281
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Temperature effects on brain tissue in compression.
    Rashid B; Destrade M; Gilchrist MD
    J Mech Behav Biomed Mater; 2012 Oct; 14():113-8. PubMed ID: 23022565
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Passive skeletal muscle response to impact loading: experimental testing and inverse modelling.
    Takaza M; Moerman KM; Simms CK
    J Mech Behav Biomed Mater; 2013 Nov; 27():214-25. PubMed ID: 23707599
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Compressive properties and constitutive modeling of different regions of 8-week-old pediatric porcine brain under large strain and wide strain rates.
    Li Z; Yang H; Wang G; Han X; Zhang S
    J Mech Behav Biomed Mater; 2019 Jan; 89():122-131. PubMed ID: 30268868
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mechanical Characterization of Immature Porcine Brainstem in Tension at Dynamic Strain Rates.
    Zhao H; Yin Z; Li K; Liao Z; Xiang H; Zhu F
    Med Sci Monit Basic Res; 2016 Jan; 22():6-13. PubMed ID: 26790497
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Dynamic, regional mechanical properties of the porcine brain: indentation in the coronal plane.
    Elkin BS; Ilankova A; Morrison B
    J Biomech Eng; 2011 Jul; 133(7):071009. PubMed ID: 21823748
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Generalization of exponential based hyperelastic to hyper-viscoelastic model for investigation of mechanical behavior of rate dependent materials.
    Narooei K; Arman M
    J Mech Behav Biomed Mater; 2018 Mar; 79():104-113. PubMed ID: 29289929
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Fabric-based Tsai-Wu yield criteria for vertebral trabecular bone in stress and strain space.
    Wolfram U; Gross T; Pahr DH; Schwiedrzik J; Wilke HJ; Zysset PK
    J Mech Behav Biomed Mater; 2012 Nov; 15():218-28. PubMed ID: 23159819
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Viscoelastic material model for the temporomandibular joint disc derived from dynamic shear tests or strain-relaxation tests.
    Koolstra JH; Tanaka E; Van Eijden TM
    J Biomech; 2007; 40(10):2330-4. PubMed ID: 17141788
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Fitted hyperelastic parameters for Human brain tissue from reported tension, compression, and shear tests.
    Moran R; Smith JH; GarcĂ­a JJ
    J Biomech; 2014 Nov; 47(15):3762-6. PubMed ID: 25446271
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Factors Affecting Diffuse Axonal Injury under Blunt Impact and Proposal for a Head Injury Criteria: A Finite Element Analysis.
    Sarkar S; Majumder S; Roychowdhury A
    Crit Rev Biomed Eng; 2018; 46(4):289-310. PubMed ID: 30806247
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Shear versus micro-shear bond strength test: a finite element stress analysis.
    Placido E; Meira JB; Lima RG; Muench A; de Souza RM; Ballester RY
    Dent Mater; 2007 Sep; 23(9):1086-92. PubMed ID: 17123595
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mechanical properties of brain tissue in tension.
    Miller K; Chinzei K
    J Biomech; 2002 Apr; 35(4):483-90. PubMed ID: 11934417
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Shear behavior of bovine scleral tissue.
    Argento A; Kim W; Rozsa FW; DeBolt KL; Zikanova S; Richards JR
    J Biomech Eng; 2014 Jul; 136(7):. PubMed ID: 24805965
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Biomechanical response of condylar cartilage-on-bone to dynamic shear.
    Tanaka E; Rego EB; Iwabuchi Y; Inubushi T; Koolstra JH; van Eijden TM; Kawai N; Kudo Y; Takata T; Tanne K
    J Biomed Mater Res A; 2008 Apr; 85(1):127-32. PubMed ID: 17688244
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Viscoelastic properties of the human medial collateral ligament under longitudinal, transverse and shear loading.
    Bonifasi-Lista C; Lake SP; Small MS; Weiss JA
    J Orthop Res; 2005 Jan; 23(1):67-76. PubMed ID: 15607877
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Biomechanical assessment of brain dynamic responses due to blast pressure waves.
    Chafi MS; Karami G; Ziejewski M
    Ann Biomed Eng; 2010 Feb; 38(2):490-504. PubMed ID: 19806456
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Viscoelastic shear properties of the fresh porcine lens.
    Schachar RA; Chan RW; Fu M
    Br J Ophthalmol; 2007 Mar; 91(3):366-8. PubMed ID: 17035268
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 25.