These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
320 related articles for article (PubMed ID: 23973671)
1. PDMS bonding to a bio-friendly photoresist via self-polymerized poly(dopamine) adhesive for complex protein micropatterning inside microfluidic channels. Kim M; Song KH; Doh J Colloids Surf B Biointerfaces; 2013 Dec; 112():134-8. PubMed ID: 23973671 [TBL] [Abstract][Full Text] [Related]
2. Complex micropatterning of proteins within microfluidic channels. Kim M; Doh J Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():782-5. PubMed ID: 25570075 [TBL] [Abstract][Full Text] [Related]
3. Addressable micropatterning of multiple proteins and cells by microscope projection photolithography based on a protein friendly photoresist. Kim M; Choi JC; Jung HR; Katz JS; Kim MG; Doh J Langmuir; 2010 Jul; 26(14):12112-8. PubMed ID: 20565061 [TBL] [Abstract][Full Text] [Related]
4. Mitigated reactive oxygen species generation leads to an improvement of cell proliferation on poly[glycidyl methacrylate-co-poly(ethylene glycol) methacrylate] functionalized polydimethylsiloxane surfaces. Yu L; Shi Z; Gao L; Li C J Biomed Mater Res A; 2015 Sep; 103(9):2987-97. PubMed ID: 25711883 [TBL] [Abstract][Full Text] [Related]
5. Photopatterning with a printed transparency mask and a protein-friendly photoresist. Kang J; Choi JC; Kim M; Jung HR; Doh J Methods Cell Biol; 2014; 119():55-72. PubMed ID: 24439279 [TBL] [Abstract][Full Text] [Related]
6. Poly(dimethylsiloxane) thin films as biocompatible coatings for microfluidic devices: cell culture and flow studies with glial cells. Peterson SL; McDonald A; Gourley PL; Sasaki DY J Biomed Mater Res A; 2005 Jan; 72(1):10-8. PubMed ID: 15534867 [TBL] [Abstract][Full Text] [Related]
7. In-situ grafting hydrophilic polymer on chitosan modified poly(dimethylsiloxane) microchip for separation of biomolecules. Wang AJ; Xu JJ; Chen HY J Chromatogr A; 2007 Apr; 1147(1):120-6. PubMed ID: 17320888 [TBL] [Abstract][Full Text] [Related]
8. Surface and tribological behaviors of the bioinspired polydopamine thin films under dry and wet conditions. Zhang W; Yang FK; Han Y; Gaikwad R; Leonenko Z; Zhao B Biomacromolecules; 2013 Feb; 14(2):394-405. PubMed ID: 23311532 [TBL] [Abstract][Full Text] [Related]
9. Antifouling properties of poly(dimethylsiloxane) surfaces modified with quaternized poly(dimethylaminoethyl methacrylate). Tu Q; Wang JC; Liu R; He J; Zhang Y; Shen S; Xu J; Liu J; Yuan MS; Wang J Colloids Surf B Biointerfaces; 2013 Feb; 102():361-70. PubMed ID: 23006574 [TBL] [Abstract][Full Text] [Related]
10. Stable nonpolar solvent droplet generation using a poly(dimethylsiloxane) microfluidic channel coated with poly-p-xylylene for a nanoparticle growth. Lim H; Moon S Biomed Microdevices; 2015 Aug; 17(4):70. PubMed ID: 26112614 [TBL] [Abstract][Full Text] [Related]
11. Solution-phase surface modification in intact poly(dimethylsiloxane) microfluidic channels. Sui G; Wang J; Lee CC; Lu W; Lee SP; Leyton JV; Wu AM; Tseng HR Anal Chem; 2006 Aug; 78(15):5543-51. PubMed ID: 16878894 [TBL] [Abstract][Full Text] [Related]
12. Characterization of PDMS-modified glass from cast-and-peel fabrication. Liu K; Tian Y; Pitchimani R; Huang M; Lincoln H; Pappas D Talanta; 2009 Jul; 79(2):333-8. PubMed ID: 19559887 [TBL] [Abstract][Full Text] [Related]
13. Tunable micropatterned substrates based on poly(dopamine) deposition via microcontact printing. Chien HW; Kuo WH; Wang MJ; Tsai SW; Tsai WB Langmuir; 2012 Apr; 28(13):5775-82. PubMed ID: 22397599 [TBL] [Abstract][Full Text] [Related]
14. Protein immobilization on the surface of polydimethylsiloxane and polymethyl methacrylate microfluidic devices. Khnouf R; Karasneh D; Albiss BA Electrophoresis; 2016 Feb; 37(3):529-35. PubMed ID: 26534833 [TBL] [Abstract][Full Text] [Related]
15. Characterization of collagen fibrils films formed on polydimethylsiloxane surfaces for microfluidic applications. Spurlin TA; Forry SP; Cooksey GA; Plant AL Langmuir; 2010 Sep; 26(17):14111-7. PubMed ID: 20666411 [TBL] [Abstract][Full Text] [Related]
16. Nonfouling hydrophilic poly(ethylene glycol) engraftment strategy for PDMS/SU-8 heterogeneous microfluidic devices. Yeh PY; Zhang Z; Lin M; Cao X Langmuir; 2012 Nov; 28(46):16227-36. PubMed ID: 23110374 [TBL] [Abstract][Full Text] [Related]
17. In situ micropatterning technique by cell crushing for co-cultures inside microfluidic biochips. Leclerc E; El Kirat K; Griscom L Biomed Microdevices; 2008 Apr; 10(2):169-77. PubMed ID: 17849187 [TBL] [Abstract][Full Text] [Related]
18. Grafting epoxy-modified hydrophilic polymers onto poly(dimethylsiloxane) microfluidic chip to resist nonspecific protein adsorption. Wu D; Zhao B; Dai Z; Qin J; Lin B Lab Chip; 2006 Jul; 6(7):942-7. PubMed ID: 16804600 [TBL] [Abstract][Full Text] [Related]
19. Micropatterning with a liquid crystal display (LCD) projector. Itoga K; Kobayashi J; Yamato M; Okano T Methods Cell Biol; 2014; 119():141-58. PubMed ID: 24439283 [TBL] [Abstract][Full Text] [Related]