BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

484 related articles for article (PubMed ID: 23973785)

  • 1. Development and validation of a multiplex quantitative PCR assay for the rapid detection of Grapevine virus A, B and D.
    Osman F; Hodzic E; Omanska-Klusek A; Olineka T; Rowhani A
    J Virol Methods; 2013 Dec; 194(1-2):138-45. PubMed ID: 23973785
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development and validation of a multiplex reverse transcription quantitative PCR (RT-qPCR) assay for the rapid detection of Citrus tristeza virus, Citrus psorosis virus, and Citrus leaf blotch virus.
    Osman F; Hodzic E; Kwon SJ; Wang J; Vidalakis G
    J Virol Methods; 2015 Aug; 220():64-75. PubMed ID: 25907469
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative detection of a large population of grapevine viruses by TaqMan
    Bruisson S; Lebel S; Walter B; Prevotat L; Seddas S; Schellenbaum P
    J Virol Methods; 2017 Feb; 240():73-77. PubMed ID: 27923589
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of RT-PCR assays for the detection and the resultant phylogenetic analysis of four grapevine vitiviruses based on the coat protein sequences.
    Elbeaino T; Chammem H; Alsaheli Z; Ben Slimen A; Digiaro M
    J Virol Methods; 2019 Nov; 273():113712. PubMed ID: 31400362
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multiplex RT-PCR method for the simultaneous detection of nine grapevine viruses.
    Gambino G
    Methods Mol Biol; 2015; 1236():39-47. PubMed ID: 25287494
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of a universal RT-PCR assay for grapevine vitiviruses.
    Diaz-Lara A; Erickson TM; Golino D; Al Rwahnih M
    PLoS One; 2020; 15(9):e0239522. PubMed ID: 32960934
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Real-time multiplex RT-PCR for the simultaneous detection of the five main grapevine viruses.
    López-Fabuel I; Wetzel T; Bertolini E; Bassler A; Vidal E; Torres LB; Yuste A; Olmos A
    J Virol Methods; 2013 Mar; 188(1-2):21-4. PubMed ID: 23219809
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Validation of high-throughput real time polymerase chain reaction assays for simultaneous detection of invasive citrus pathogens.
    Saponari M; Loconsole G; Liao HH; Jiang B; Savino V; Yokomi RK
    J Virol Methods; 2013 Nov; 193(2):478-86. PubMed ID: 23891873
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Detection and quantitation of two cucurbit criniviruses in mixed infection by real-time RT-PCR.
    Abrahamian PE; Seblani R; Sobh H; Abou-Jawdah Y
    J Virol Methods; 2013 Nov; 193(2):320-6. PubMed ID: 23810855
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Real-time RT-PCR (TaqMan) assays for the detection of viruses associated with Rugose wood complex of grapevine.
    Osman F; Rowhani A
    J Virol Methods; 2008 Dec; 154(1-2):69-75. PubMed ID: 18848580
    [TBL] [Abstract][Full Text] [Related]  

  • 11. First molecular characterization of grapevine virus B (GVB) in Portuguese grapevine cultivars and improvement of the RT-PCR detection assay.
    Fonseca F; Duarte V; Teixeira Santos M; Brazão J; Eiras-Dias E
    Arch Virol; 2016 Dec; 161(12):3535-3540. PubMed ID: 27604120
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rugose wood-associated viruses do not appear to be involved in Shiraz (Syrah) decline in South Africa.
    Goszczynski DE
    Arch Virol; 2010 Sep; 155(9):1463-9. PubMed ID: 20549265
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of multiple virus-infected grapevine plant reveals persistence but uneven virus distribution.
    Kominek P; Glasa M; Kominkova M
    Acta Virol; 2009; 53(4):281-5. PubMed ID: 19941393
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Detection and molecular characterization of Egyptian isolates of grapevine viruses.
    Fattouh F; Ratti C; El-Ahwany AM; Aleem EA; Babini AR; Autonell CR
    Acta Virol; 2014; 58(2):137-45. PubMed ID: 24957718
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of degenerate and species-specific primers for the differential and simultaneous RT-PCR detection of grapevine-infecting nepoviruses of subgroups A, B and C.
    Digiaro M; Elbeaino T; Martelli GP
    J Virol Methods; 2007 Apr; 141(1):34-40. PubMed ID: 17187868
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The grapevine-infecting vitiviruses, with particular reference to grapevine virus A.
    du Preez J; Stephan D; Mawassi M; Burger JT
    Arch Virol; 2011 Sep; 156(9):1495-503. PubMed ID: 21779907
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Detection of new vitiviruses infecting grapevine in California.
    Diaz-Lara A; Brisbane RS; Aram K; Golino D; Al Rwahnih M
    Arch Virol; 2019 Oct; 164(10):2573-2580. PubMed ID: 31346770
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Detection of four regulated grapevine viruses in a qualitative, single tube real-time PCR with melting curve analysis.
    Aloisio M; Morelli M; Elicio V; Saldarelli P; Ura B; Bortot B; Severini GM; Minafra A
    J Virol Methods; 2018 Jul; 257():42-47. PubMed ID: 29654789
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Detection and sequence analysis of grapevine virus B isolates from China.
    Hu GJ; Dong YF; Zhang ZP; Fan XD; Fang R; Zhu HJ
    Acta Virol; 2014; 58(2):180-4. PubMed ID: 24957724
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of low-density arrays, RT-PCR and real-time TaqMan RT-PCR in detection of grapevine viruses.
    Osman F; Leutenegger C; Golino D; Rowhani A
    J Virol Methods; 2008 May; 149(2):292-9. PubMed ID: 18329731
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.