These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

269 related articles for article (PubMed ID: 23973913)

  • 41. Effect of Implicit Perceptual-Motor Training on Decision-Making Skills and Underpinning Gaze Behavior in Combat Athletes.
    Milazzo N; Farrow D; Fournier JF
    Percept Mot Skills; 2016 Aug; 123(1):300-23. PubMed ID: 27371637
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Movement planning with probabilistic target information.
    Hudson TE; Maloney LT; Landy MS
    J Neurophysiol; 2007 Nov; 98(5):3034-46. PubMed ID: 17898140
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The expression of decision and learning variables in movement patterns related to decision actions.
    Selbing I; Skewes J
    Exp Brain Res; 2024 Jun; 242(6):1311-1325. PubMed ID: 38551690
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The time course for kinetic versus kinematic planning of goal-directed human motor behavior.
    Vesia M; Vander H; Yan X; Sergio LE
    Exp Brain Res; 2005 Jan; 160(3):290-301. PubMed ID: 15309357
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Pointing, looking at, and pressing keys: A diffusion model account of response modality.
    Gomez P; Ratcliff R; Childers R
    J Exp Psychol Hum Percept Perform; 2015 Dec; 41(6):1515-23. PubMed ID: 26322685
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Learning to Choose: Behavioral Dynamics Underlying the Initial Acquisition of Decision-Making.
    White SR; Preston MW; Swanson K; Laubach M
    eNeuro; 2024 May; 11(5):. PubMed ID: 38724267
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Perceptual decision processes flexibly adapt to avoid change-of-mind motor costs.
    Moher J; Song JH
    J Vis; 2014 Jul; 14(8):1. PubMed ID: 24986186
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Clustering analysis of movement kinematics in reinforcement learning.
    Sidarta A; Komar J; Ostry DJ
    J Neurophysiol; 2022 Feb; 127(2):341-353. PubMed ID: 34936514
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Credit assignment in movement-dependent reinforcement learning.
    McDougle SD; Boggess MJ; Crossley MJ; Parvin D; Ivry RB; Taylor JA
    Proc Natl Acad Sci U S A; 2016 Jun; 113(24):6797-802. PubMed ID: 27247404
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A switching cost for motor planning.
    Orban de Xivry JJ; Lefèvre P
    J Neurophysiol; 2016 Dec; 116(6):2857-2868. PubMed ID: 27655964
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Neural oscillations and synchronization differentially support evidence accumulation in perceptual and value-based decision making.
    Polanía R; Krajbich I; Grueschow M; Ruff CC
    Neuron; 2014 May; 82(3):709-20. PubMed ID: 24811387
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A motor planning stage represents the shape of upcoming movement trajectories.
    Wong AL; Goldsmith J; Krakauer JW
    J Neurophysiol; 2016 Aug; 116(2):296-305. PubMed ID: 27098032
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The impact of learning on perceptual decisions and its implication for speed-accuracy tradeoffs.
    Mendonça AG; Drugowitsch J; Vicente MI; DeWitt EEJ; Pouget A; Mainen ZF
    Nat Commun; 2020 Jun; 11(1):2757. PubMed ID: 32488065
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Cost-benefit trade-offs in decision-making and learning.
    Sidarus N; Palminteri S; Chambon V
    PLoS Comput Biol; 2019 Sep; 15(9):e1007326. PubMed ID: 31490934
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Dynamic estimation of task-relevant variance in movement under risk.
    Landy MS; Trommershäuser J; Daw ND
    J Neurosci; 2012 Sep; 32(37):12702-11. PubMed ID: 22972994
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Model-based choices involve prospective neural activity.
    Doll BB; Duncan KD; Simon DA; Shohamy D; Daw ND
    Nat Neurosci; 2015 May; 18(5):767-72. PubMed ID: 25799041
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The role of inertial sensitivity in motor planning.
    Sabes PN; Jordan MI; Wolpert DM
    J Neurosci; 1998 Aug; 18(15):5948-57. PubMed ID: 9671681
    [TBL] [Abstract][Full Text] [Related]  

  • 58. How do reaching and walking costs affect movement path selection?
    Potts CA; Callahan-Flintoft C; Rosenbaum DA
    Exp Brain Res; 2018 Oct; 236(10):2727-2737. PubMed ID: 30003295
    [TBL] [Abstract][Full Text] [Related]  

  • 59. What makes a reach movement effortful? Physical effort discounting supports common minimization principles in decision making and motor control.
    Morel P; Ulbrich P; Gail A
    PLoS Biol; 2017 Jun; 15(6):e2001323. PubMed ID: 28586347
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Choosing the fastest movement: perceiving speed-accuracy tradeoffs.
    Young SJ; Pratt J; Chau T
    Exp Brain Res; 2008 Mar; 185(4):681-8. PubMed ID: 17992521
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.