These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

75 related articles for article (PubMed ID: 23973945)

  • 1. Non-spherical particles for optical trap assisted nanopatterning.
    Tsai YC; Fardel R; Panczyk MM; Furst EM; Arnold CB
    Nanotechnology; 2013 Sep; 24(37):375303. PubMed ID: 23973945
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Subwavelength direct-write nanopatterning using optically trapped microspheres.
    McLeod E; Arnold CB
    Nat Nanotechnol; 2008 Jul; 3(7):413-7. PubMed ID: 18654565
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Preparation of non-spherical particles by shell-shield etching for near-field nanopatterning.
    Ye J; Liesbet L
    Nanotechnology; 2014 Jul; 25(27):275303. PubMed ID: 24959920
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Parallel optical trap assisted nanopatterning on rough surfaces.
    Tsai YC; Leitz KH; Fardel R; Otto A; Schmidt M; Arnold CB
    Nanotechnology; 2012 Apr; 23(16):165304. PubMed ID: 22469693
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative imaging of the optical near field.
    Kühler P; García de Abajo FJ; Leiprecht P; Kolloch A; Solis J; Leiderer P; Siegel J
    Opt Express; 2012 Sep; 20(20):22063-78. PubMed ID: 23037356
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Femtosecond Nanostructuring of Glass with Optically Trapped Microspheres and Chemical Etching.
    Shakhov A; Astafiev A; Gulin A; Nadtochenko V
    ACS Appl Mater Interfaces; 2015 Dec; 7(49):27467-72. PubMed ID: 26600213
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Measuring the complete force field of an optical trap.
    Jahnel M; Behrndt M; Jannasch A; Schäffer E; Grill SW
    Opt Lett; 2011 Apr; 36(7):1260-2. PubMed ID: 21479051
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamic light scattering from an optically trapped microsphere.
    Viana NB; Freire RT; Mesquita ON
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Apr; 65(4 Pt 1):041921. PubMed ID: 12005887
    [TBL] [Abstract][Full Text] [Related]  

  • 9. First-order nonconservative motion of optically trapped nonspherical particles.
    Simpson SH; Hanna S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Sep; 82(3 Pt 1):031141. PubMed ID: 21230059
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Numerical analysis for transverse microbead trapping using 30 MHz focused ultrasound in ray acoustics regime.
    Lee J
    Ultrasonics; 2014 Jan; 54(1):11-9. PubMed ID: 23809757
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced absorption in optically thin solar cells by scattering from embedded dielectric nanoparticles.
    Nagel JR; Scarpulla MA
    Opt Express; 2010 Jun; 18 Suppl 2():A139-46. PubMed ID: 20588582
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pulsed laser manipulation of an optically trapped bead: averaging thermal noise and measuring the pulsed force amplitude.
    Lindballe TB; Kristensen MV; Berg-Sørensen K; Keiding SR; Stapelfeldt H
    Opt Express; 2013 Jan; 21(2):1986-96. PubMed ID: 23389179
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Finite-difference time-domain and near-field-to-far-field transformation in the spectral domain: application to scattering objects with complex shapes in the vicinity of a semi-infinite dielectric medium.
    Muller J; Parent G; Jeandel G; Lacroix D
    J Opt Soc Am A Opt Image Sci Vis; 2011 May; 28(5):868-78. PubMed ID: 21532699
    [TBL] [Abstract][Full Text] [Related]  

  • 14. How light absorption modifies the radiative force on a microparticle in optical tweezers.
    Campos WH; Fonseca JM; Mendes JBS; Rocha MS; Moura-Melo WA
    Appl Opt; 2018 Sep; 57(25):7216-7224. PubMed ID: 30182982
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Defect/oxygen assisted direct write technique for nanopatterning graphene.
    Cagliani A; Lindvall N; Larsen MB; Mackenzie DM; Jessen BS; Booth TJ; Bøggild P
    Nanoscale; 2015 Apr; 7(14):6271-7. PubMed ID: 25779889
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Micromanipulation by "multiple" optical traps created by a single fast scanning trap integrated with the bilateral confocal scanning laser microscope.
    Visscher K; Brakenhoff GJ; Krol JJ
    Cytometry; 1993; 14(2):105-14. PubMed ID: 8440145
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surface plasmon-based nanopatterning assisted by gold nanospheres.
    Heltzel A; Theppakuttai S; Chen SC; Howell JR
    Nanotechnology; 2008 Jan; 19(2):025305. PubMed ID: 21817542
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Generation and assembly of spheroid-like particles.
    Deng T; Cournoyer JR; Schermerhorn JH; Balch J; Du Y; Blohm ML
    J Am Chem Soc; 2008 Nov; 130(44):14396-7. PubMed ID: 18839944
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Why single-beam optical tweezers trap gold nanowires in three dimensions.
    Yan Z; Pelton M; Vigderman L; Zubarev ER; Scherer NF
    ACS Nano; 2013 Oct; 7(10):8794-800. PubMed ID: 24041038
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 4.