These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 2397413)

  • 21. FMRFamide elicits chromatophore expansion and retraction depending on its type and development in the squid, Sepioteuthis lessoniana.
    Suzuki M; Kimura T; Ogawa H; Hotta K; Oka K
    Invert Neurosci; 2009 Dec; 9(3-4):185-93. PubMed ID: 20376518
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Dye coupling in the muscles controlling squid chromatophore expansion.
    Reed CM
    J Exp Biol; 1995 Dec; 198(Pt 12):2631-4. PubMed ID: 8576688
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cephalopod coloration model. I. Squid chromatophores and iridophores.
    Sutherland RL; Mäthger LM; Hanlon RT; Urbas AM; Stone MO
    J Opt Soc Am A Opt Image Sci Vis; 2008 Mar; 25(3):588-99. PubMed ID: 18311226
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Peptidergic regulation of chromatophore function in the European cuttlefish Sepia officinalis.
    Loi P; Saunders R; Young D; Tublitz N
    J Exp Biol; 1996; 199(Pt 5):1177-87. PubMed ID: 9319020
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Roles of glutamate and FMRFamide-related peptides at the chromatophore neuromuscular junction in the cuttlefish, Sepia officinalis.
    Loi PK; Tublitz NJ
    J Comp Neurol; 2000 May; 420(4):499-511. PubMed ID: 10805923
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Molecular characterization of cell types in the squid
    Duruz J; Sprecher M; Kaldun JC; Al-Soudy AS; Lischer HEL; van Geest G; Nicholson P; Bruggmann R; Sprecher SG
    Elife; 2023 Jan; 12():. PubMed ID: 36594460
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The structure-function relationships of a natural nanoscale photonic device in cuttlefish chromatophores.
    Deravi LF; Magyar AP; Sheehy SP; Bell GR; Mäthger LM; Senft SL; Wardill TJ; Lane WS; Kuzirian AM; Hanlon RT; Hu EL; Parker KK
    J R Soc Interface; 2014 Apr; 11(93):20130942. PubMed ID: 24478280
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Chromogenic behaviors of the Humboldt squid (Dosidicus gigas) studied in situ with an animal-borne video package.
    Rosen H; Gilly W; Bell L; Abernathy K; Marshall G
    J Exp Biol; 2015 Jan; 218(Pt 2):265-75. PubMed ID: 25609785
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Malleable skin coloration in cephalopods: selective reflectance, transmission and absorbance of light by chromatophores and iridophores.
    Mäthger LM; Hanlon RT
    Cell Tissue Res; 2007 Jul; 329(1):179-86. PubMed ID: 17410381
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Highly Efficient Knockout of a Squid Pigmentation Gene.
    Crawford K; Diaz Quiroz JF; Koenig KM; Ahuja N; Albertin CB; Rosenthal JJC
    Curr Biol; 2020 Sep; 30(17):3484-3490.e4. PubMed ID: 32735817
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Neural control of cephalopod camouflage.
    Montague TG
    Curr Biol; 2023 Oct; 33(20):R1095-R1100. PubMed ID: 37875091
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Quantifying the Speed of Chromatophore Activity at the Single-Organ Level in Response to a Visual Startle Stimulus in Living, Intact Squid.
    Hadjisolomou SP; El-Haddad RW; Kloskowski K; Chavarga A; Abramov I
    Front Physiol; 2021; 12():675252. PubMed ID: 34220538
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Atlas of the embryonic brain in the pygmy squid, Idiosepius paradoxus.
    Yamamoto M; Shimazaki Y; Shigeno S
    Zoolog Sci; 2003 Feb; 20(2):163-79. PubMed ID: 12655180
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A Method for Extracting Pigments from Squid Doryteuthis pealeii.
    DiBona CW; Williams TL; Dinneen SR; Jones Labadie SF; Deravi LF
    J Vis Exp; 2016 Nov; (117):. PubMed ID: 27911390
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Lateral line analogue aids vision in successful predator evasion for the brief squid, Lolliguncula brevis.
    York CA; Bartol IK
    J Exp Biol; 2014 Jul; 217(Pt 14):2437-9. PubMed ID: 24744416
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Neural regulation of a complex behavior: body patterning in cephalopod molluscs.
    Tublitz NJ; Gaston MR; Loi PK
    Integr Comp Biol; 2006 Dec; 46(6):880-9. PubMed ID: 21672792
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Expression of squid iridescence depends on environmental luminance and peripheral ganglion control.
    Gonzalez-Bellido PT; Wardill TJ; Buresch KC; Ulmer KM; Hanlon RT
    J Exp Biol; 2014 Mar; 217(Pt 6):850-8. PubMed ID: 24622892
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Analysis of neurotransmitter distribution in brain development of benthic and pelagic octopod cephalopods.
    Wollesen T; Sukhsangchan C; Seixas P; Nabhitabhata J; Wanninger A
    J Morphol; 2012 Jul; 273(7):776-90. PubMed ID: 22461086
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Magnetic resonance histology: in situ single cell imaging of receptor cells in an invertebrate (Lolliguncula brevis, Cephalopoda) sense organ.
    Gozansky EK; Ezell EL; Budelmann BU; Quast MJ
    Magn Reson Imaging; 2003 Nov; 21(9):1019-22. PubMed ID: 14684205
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The nervous system of Loligo. II. Suboesophageal centres.
    Young JZ
    Philos Trans R Soc Lond B Biol Sci; 1976 Mar; 274(930):101-67. PubMed ID: 5740
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.