These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 23974153)

  • 1. Polycarbonate as an elasto-plastic material model for simulation of the microstructure hot imprint process.
    Narijauskaitė B; Palevičius A; Gaidys R; Janušas G; Sakalys R
    Sensors (Basel); 2013 Aug; 13(9):11229-42. PubMed ID: 23974153
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assessment of the viscoelastic mechanical properties of polycarbonate urethane for medical devices.
    Beckmann A; Heider Y; Stoffel M; Markert B
    J Mech Behav Biomed Mater; 2018 Jun; 82():1-8. PubMed ID: 29554633
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterisation of Bionate polycarbonate polyurethanes for orthopaedic applications.
    Geary C; Birkinshaw C; Jones E
    J Mater Sci Mater Med; 2008 Nov; 19(11):3355-63. PubMed ID: 18548336
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanical properties variation and constitutive modelling of biomedical polymers after sterilization.
    Zanelli L; Todros S; Carniel EL; Pavan PG; Pavan PG
    Acta Bioeng Biomech; 2017; 19(3):3-9. PubMed ID: 29205213
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydrophobic modification of polycarbonate for reproducible and stable formation of biocompatible microparticles.
    Jankowski P; Ogonczyk D; Kosinski A; Lisowski W; Garstecki P
    Lab Chip; 2011 Feb; 11(4):748-52. PubMed ID: 21132214
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of Finite Element Models of PP, PETG, PVC and SAN Polymers for Thermal Imprint Prediction of High-Aspect-Ratio Microfluidics.
    Ciganas J; Griskevicius P; Palevicius A; Urbaite S; Janusas G
    Micromachines (Basel); 2022 Sep; 13(10):. PubMed ID: 36296008
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of hydroxyl-terminated polydimethylsiloxane on high-strength biocompatible polycarbonate urethane films.
    Zhu R; Wang X; Yang J; Wang Y; Zhang Z; Hou Y; Lin F
    Biomed Mater; 2016 Dec; 12(1):015011. PubMed ID: 27934785
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reactive electrospinning and biodegradation of cross-linked methacrylated polycarbonate nanofibers.
    Wu R; Zhang JF; Fan Y; Stoute D; Lallier T; Xu X
    Biomed Mater; 2011 Jun; 6(3):035004. PubMed ID: 21498894
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DNA separation with low-viscosity sieving matrix on microfabricated polycarbonate microfluidic chips.
    Ye MY; Yin XF; Fang ZL
    Anal Bioanal Chem; 2005 Feb; 381(4):820-7. PubMed ID: 15657702
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modified polycarbonate urethane: synthesis, properties and biological investigation in vitro.
    Szelest-Lewandowska A; Masiulanis B; Szymonowicz M; Pielka S; Paluch D
    J Biomed Mater Res A; 2007 Aug; 82(2):509-20. PubMed ID: 17530635
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Micro-structuring of polycarbonate-urethane surfaces in order to reduce platelet activation and adhesion.
    Clauser J; Gester K; Roggenkamp J; Mager I; Maas J; Jansen SV; Steinseifer U
    J Biomater Sci Polym Ed; 2014; 25(5):504-18. PubMed ID: 24484511
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanical behavior of polycarbonate fabricated at different cooling speeds.
    Choi JH; Suhr J; Koh BH
    J Nanosci Nanotechnol; 2014 Oct; 14(10):7477-82. PubMed ID: 25942812
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chemical and physical characterization of a novel poly(carbonate urea) urethane surface with protein crosslinker sites.
    Phaneuf MD; Quist WC; LoGerfo FW; Szycher M; Dempsey DJ; Bide MJ
    J Biomater Appl; 1997 Oct; 12(2):100-20. PubMed ID: 9399137
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vitro stability of polyether and polycarbonate urethanes.
    Tanzi MC; Farè S; Petrini P
    J Biomater Appl; 2000 Apr; 14(4):325-48. PubMed ID: 10794506
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis and evaluation of a biomedical polycarbonate urethane tested in an in vitro study and an ovine arthroplasty model. Part I: materials selection and evaluation.
    Khan I; Smith N; Jones E; Finch DS; Cameron RE
    Biomaterials; 2005 Feb; 26(6):621-31. PubMed ID: 15282140
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simple, benign, aqueous-based amination of polycarbonate surfaces.
    VanDelinder V; Wheeler DR; Small LJ; Brumbach MT; Spoerke ED; Henderson I; Bachand GD
    ACS Appl Mater Interfaces; 2015 Mar; 7(10):5643-9. PubMed ID: 25695347
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure and mechanical properties of polycarbonate modified clay nanocomposites.
    Guduri BR; Luyt AS
    J Nanosci Nanotechnol; 2008 Apr; 8(4):1880-5. PubMed ID: 18572589
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessment of the shock adsorption properties of bike helmets: a numerical/experimental approach.
    Bocciarelli M; Carvelli V; Mariani S; Tenni M
    Comput Methods Biomech Biomed Engin; 2020 Apr; 23(5):169-181. PubMed ID: 31905291
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functionalized polycarbonate derived from tartaric acid: enzymatic ring-opening polymerization of a seven-membered cyclic carbonate.
    Wu R; Al-Azemi TF; Bisht KS
    Biomacromolecules; 2008 Oct; 9(10):2921-8. PubMed ID: 18771312
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Degradation studies on biodegradable nanocomposite based on polycaprolactone/polycarbonate (80:20%) polyhedral oligomeric silsesquioxane.
    Raghunath J; Georgiou G; Armitage D; Nazhat SN; Sales KM; Butler PE; Seifalian AM
    J Biomed Mater Res A; 2009 Dec; 91(3):834-44. PubMed ID: 19051308
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.