BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

584 related articles for article (PubMed ID: 23974161)

  • 1. Target-induced structure switching of hairpin aptamers for label-free and sensitive fluorescent detection of ATP via exonuclease-catalyzed target recycling amplification.
    Xu Y; Xu J; Xiang Y; Yuan R; Chai Y
    Biosens Bioelectron; 2014 Jan; 51():293-6. PubMed ID: 23974161
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A sensitive electrochemical aptasensor for ATP detection based on exonuclease III-assisted signal amplification strategy.
    Bao T; Shu H; Wen W; Zhang X; Wang S
    Anal Chim Acta; 2015 Mar; 862():64-9. PubMed ID: 25682429
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Target recycling amplification for label-free and sensitive colorimetric detection of adenosine triphosphate based on un-modified aptamers and DNAzymes.
    Gong X; Li J; Zhou W; Xiang Y; Yuan R; Chai Y
    Anal Chim Acta; 2014 May; 828():80-4. PubMed ID: 24845818
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A G-quadruplex-based Label-free Fluorometric Aptasensor for Adenosine Triphosphate Detection.
    Li LJ; Tian X; Kong XJ; Chu X
    Anal Sci; 2015; 31(6):469-73. PubMed ID: 26063007
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel fluorescent biosensor for Adenosine Triphosphate detection based on the polydopamine nanospheres integrating with enzymatic recycling amplification.
    Ji X; Yi B; Xu Y; Zhao Y; Zhong H; Ding C
    Talanta; 2017 Jul; 169():8-12. PubMed ID: 28411826
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A catalytic and dual recycling amplification ATP sensor based on target-driven allosteric structure switching of aptamer beacons.
    Peng Y; Li D; Yuan R; Xiang Y
    Biosens Bioelectron; 2018 May; 105():1-5. PubMed ID: 29331900
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A universal and label-free aptasensor for fluorescent detection of ATP and thrombin based on SYBR Green I dye.
    Kong L; Xu J; Xu Y; Xiang Y; Yuan R; Chai Y
    Biosens Bioelectron; 2013 Apr; 42():193-7. PubMed ID: 23202351
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A label-free fluorescence assay for thrombin based on aptamer exonuclease protection and exonuclease III-assisted recycling amplification-responsive cascade zinc(II)-protoporphyrin IX/G-quadruplex supramolecular fluorescent labels.
    Lv Y; Xue Q; Gu X; Zhang S; Liu J
    Analyst; 2014 May; 139(10):2583-8. PubMed ID: 24707508
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Label-free and rapid detection of ATP based on structure switching of aptamers.
    Ji D; Wang H; Ge J; Zhang L; Li J; Bai D; Chen J; Li Z
    Anal Biochem; 2017 Jun; 526():22-28. PubMed ID: 28315316
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A fluorescent biosensing platform based on the polydopamine nanospheres intergrating with Exonuclease III-assisted target recycling amplification.
    Qiang W; Wang X; Li W; Chen X; Li H; Xu D
    Biosens Bioelectron; 2015 Sep; 71():143-149. PubMed ID: 25897884
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A label-free signal amplification assay for DNA detection based on exonuclease III and nucleic acid dye SYBR Green I.
    Zheng A; Luo M; Xiang D; Xiang X; Ji X; He Z
    Talanta; 2013 Sep; 114():49-53. PubMed ID: 23953440
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Homogeneous electrochemical aptamer-based ATP assay with signal amplification by exonuclease III assisted target recycling.
    Liu S; Wang Y; Zhang C; Lin Y; Li F
    Chem Commun (Camb); 2013 Mar; 49(23):2335-7. PubMed ID: 23403496
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In situ amplified electrochemical aptasensing for sensitive detection of adenosine triphosphate by coupling target-induced hybridization chain reaction with the assembly of silver nanotags.
    Zhou Q; Lin Y; Lin Y; Wei Q; Chen G; Tang D
    Talanta; 2016; 146():23-8. PubMed ID: 26695229
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coupling strand extension/excision amplification with target recycling enables highly sensitive and aptamer-based label-free sensing of ATP in human serum.
    Xu L; Jiang B; Zhou W; Yuan R; Xiang Y
    Analyst; 2020 Jan; 145(2):434-439. PubMed ID: 31793560
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Silica nanoparticles based label-free aptamer hybridization for ATP detection using hoechst33258 as the signal reporter.
    Cai L; Chen ZZ; Dong XM; Tang HW; Pang DW
    Biosens Bioelectron; 2011 Nov; 29(1):46-52. PubMed ID: 21903375
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fluorescence aptameric sensor for isothermal circular strand-displacement polymerization amplification detection of adenosine triphosphate.
    Song W; Zhang Q; Xie X; Zhang S
    Biosens Bioelectron; 2014 Nov; 61():51-6. PubMed ID: 24851721
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Label-free fluorescence strategy for sensitive detection of exonuclease activity using SYBR Green I as probe.
    Xu M; Li B
    Spectrochim Acta A Mol Biomol Spectrosc; 2015; 151():22-6. PubMed ID: 26117197
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An exonuclease I-based label-free fluorometric aptasensor for adenosine triphosphate (ATP) detection with a wide concentration range.
    Wei Y; Chen Y; Li H; Shuang S; Dong C; Wang G
    Biosens Bioelectron; 2015 Jan; 63():311-316. PubMed ID: 25113049
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A versatile and highly sensitive homogeneous electrochemical strategy based on the split aptamer binding-induced DNA three-way junction and exonuclease III-assisted target recycling.
    Hou T; Li W; Zhang L; Li F
    Analyst; 2015 Aug; 140(16):5748-53. PubMed ID: 26165638
    [TBL] [Abstract][Full Text] [Related]  

  • 20. ATP detection using a label-free DNA aptamer and a cationic tetrahedralfluorene.
    Wang Y; Liu B
    Analyst; 2008 Nov; 133(11):1593-8. PubMed ID: 18936838
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 30.